Histological changes in the lungs and viral load indicators of guinea pigs in a model of SARS-CoV-2 infection
https://doi.org/10.18699/SSMJ20250415
Abstract
Laboratory animals allow modeling infectious diseases to study pathogenesis and conduct drug trials. The creation of animal models that most accurately reproduce COVID-19 is promising for assessing the effectiveness of drugs and vaccines against the SARS-CoV-2 virus. The aim is to study the histological changes in the lungs and the other indicators of the infectious process in modeling COVID-19 in guinea pigs as a type of laboratory animals susceptible to SARSCoV-2 virus.
Material and methods. The experiments were carried out on 12 guinea pigs of both sexes infected with SARS-CoV-2 alpha variant. The dynamics of the viral load was determined in nasal washes by RT-PCR; SARS-CoV-2 antibody content in the blood serum were measured by ELISA; titers of neutralizing antibodies were estimated in the neutralization reaction in Vero E6 cell culture. As controls, 12 lung autopsies of patients infected with SARS-CoV-2 (confirmed by PCR analysis) and those who died as a result of pneumonia were studied. Structural changes in the lungs of autopsy and experimental samples were studied on paraffin sections stained with haematoxylin and eosin.
Results. After intranasal infection with SARS-CoV-2 alpha variant at a dose of 4 lg TCID50 (the dose infecting 50 % of the cell culture and causing cytopathic effect in 50 % of the cell monolayer), a low level of viral load with high rates of elimination was detected in the nasal cavity and lungs of guinea pigs. On days 3 and 5, the viral load in nasal swab samples was significantly higher in males (p < 0.05). After 7 days, viral RNA was not detected in nasal swabs. Antibodies to SARSCoV-2 were detected in the blood serum of guinea pigs on the 15th day. With a neutralizing antibody titer of 1:100 for all animals, the positivity rate in females was 2 times higher. Histologically confirmed severe viral pneumonia was recorded in dead animals and at the end of the experiment, similar to changes in the autopsy material of patients with COVID-19.
Conclusions. Histological changes in the lungs of guinea pigs during modeling of SARS-CoV-2 infection indicate the susceptibility of this animal species to the studied pathogen with reproduction of the disease in patients, which allows us to consider guinea pigs as a promising animal model for the study and prevention of COVID-19.
About the Authors
A. V. ShipovalovRussian Federation
Andrey V. Shipovalov
630559, Novosibirsk region, Koltsovo
G. A. Kudrov
Russian Federation
Gleb A. Kudrov
630559, Novosibirsk region, Koltsovo
E. K. Ivleva
Russian Federation
Elena K. Ivleva
630559, Novosibirsk region, Koltsovo
V. V. Omigov
Russian Federation
Vladimir V. Omigov, candidate of medical sciences
630559, Novosibirsk region, Koltsovo
O. V. Pyankov
Russian Federation
Oleg V. Pyankov, candidate of biological sciences
630559, Novosibirsk region, Koltsovo
A. V. Zaykovskaya
Russian Federation
Anna V. Zaykovskaya, candidate of biological sciences
630559, Novosibirsk region, Koltsovo
S. A. Bodnev
Russian Federation
Sergey A. Bodnev, candidate of medical sciences
630559, Novosibirsk region, Koltsovo
I. S. Shulgina
Russian Federation
Irina S. Shulgina
630559, Novosibirsk region, Koltsovo
S. V. Savchenko
Russian Federation
Sergey V. Savchenko, doctor of medical sciences
630091, Novosibirsk, Krasny ave., 52
V. A. Gritsinger
Russian Federation
Valentina A. Gritsinger, candidate of medical sciences
630091, Novosibirsk, Krasny ave., 52
O. S. Taranov
Russian Federation
Oleg S. Taranov
630559, Novosibirsk region, Koltsovo
S. V. Aidagulova
Russian Federation
Svetlana V. Aidagulova, doctor of biological sciences
630091, Novosibirsk, Krasny ave., 52
References
1. Li L., Shi K., Gu Y., Xu Z., Shu C., Li D., Sun J., Cong M., Li X., Zhao X., … Gao G.F. Spike structures, receptor binding, and immune escape of recently circulating SARS-CoV-2 Omicron BA.2.86, JN.1, EG.5, EG.5.1, and HV.1 sub-variants. Structure. 2024;32(8):1055–1067.e6. doi: 10.1016/j.str.2024.06.012
2. Alam M.S. Insight into SARS-CoV-2 Omicron variant immune escape possibility and variant independent potential therapeutic opportunities. Heliyon. 2023;9(2):e13285. doi: 10.1016/j.heliyon.2023.e13285
3. Sutton T.C., Subbarao K. Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus. Virology. 2015;479-480:247–258. doi: 10.1016/j.virol.2015.02.030
4. Sun S.H., Chen Q., Gu H.J., Yang G., Wang Y.X., Huang X.Y., Liu S.S., Zhang N.N., Li X.F., Xiong R., … Wang Y.C. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell. Host. Microbe. 2020;28(1):124– 133.e4. doi: 10.1016/j.chom.2020.05.020
5. Dolskiy A.A., Gudymo A.S., Taranov O.S., Grishchenko I.V., Shitik E.M., Prokopov D.Y., Soldatov V.O., Sobolevskaya E.V., Bodnev S.A., Danilchenko N.V., … Yudkin D.V. The tissue distribution of SARS-CoV-2 in transgenic mice with inducible ubiquitous expression of hACE2. Front. Mol. Biosci. 2022;8:821506. doi: 10.3389/fmolb.2021.821506
6. Shipovalov A.V., Kudrov G.A., Tomilov A.A., Bodnev S.A., Boldyrev N.D., Ovchinnikova A.S., Zaikovskaya A.V., Taranov O.S., Ivleva E.K., Pyankov O.V., Maksyutov R.A. Pathogenicity of the SARS-CoV-2 virus variants of concern for the syrian golden hamster. Problemy osobo opasnykh infektsiy = Problems of Particularly Dangerous Infections. 2022;(3):164–169. [In Russian]. doi:10.21055/0370-1069-2022-3-164-169
7. Ciurkiewicz M., Armando F., Schreiner T., de Buhr N., Pilchová V., Krupp-Buzimikic V., Gabriel G., von Köckritz-Blickwede M., Baumgärtner W., Schulz C., Gerhauser I. Ferrets are valuable models for SARS-CoV-2 research. Vet. Pathol. 2022;59(4):661– 672. doi: 10.1177/03009858211071012
8. Cross R.W., Agans K.N., Prasad A.N., Borisevich V., Woolsey C., Deer D.J., Dobias N.S., Geisbert J.B., Fenton K.A., Geisbert T.W. Intranasal exposure of African green monkeys to SARS-CoV-2 results in acute phase pneumonia with shedding and lung injury still present in the early convalescence phase. Virol. J. 2020;17(1):125. doi: 10.1186/s12985-020-01396-w
9. Williamson B.N., Feldmann F., Schwarz B., Meade-White K., Porter D.P., Schulz J., van Doremalen N., Leighton I., Yinda C.K., Pérez-Pérez L., … de Wit E. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature. 2020;585(7824):273–276. doi: 10.1038/s41586-020-2423-5
10. Padilla-Carlin D.J., McMurray D.N., Hickey A.J. The guinea pig as a model of infectious diseases. Comp. Med. 2008;58(4):324–340.
11. Supasa P., Zhou D., Dejnirattisai W., Liu C., Mentzer A.J., Ginn H.M., Zhao Y., Duyvesteyn H.M.E., Nutalai R., Tuekprakhon A., … Screaton G.R. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell. 2021;184(8):2201– 2211.e7. doi: 10.1016/j.cell.2021.02.033
12. Saito A., Irie T., Suzuki R., Maemura T., Nasser H., Uriu K., Kosugi Y., Shirakawa K., Sadamasu K., Kimura I., … Sato K. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature. 2022;602(7896):300–306. doi: 10.1038/s41586-021-04266-9
13. Kovalev A.V., Frank G.A., Minaeva P.V., Tuchik E.S. Investigation of deceased persons with suspected coronavirus infection (COVID-19): Interim guidelines. Moscow, 2020. 85 p. [In Russian].
14. Matchett C.A., Marr R., Berard F.M., Cawthon A.G., Swing S.P. The laboratory ferret. Laboratory animal pocket reference. New York: CRC Press, 2012. 128 р.
15. Reed L.J., Muench H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938;27(3):493–497. doi: 10.1093/oxfordjournals.aje.a118408
16. Zaykovskaya A.V., Evseenko V.A., Olkin S.Е., Pyankov O.V. Investigating antigenic features of the SARS-CoV-2 isolated in Russian Federation in 2021– 2022 by hyperimmune mouse serum neutralization. Infektsiya i immunitet = Russian Journal of Infection and Immunity. 2023;13(1):37–45. [In Russian]. doi: 10.15789/2220-7619-IAF-1998
17. Samsonova M.V., Mikhaleva L.M., Zairatyants O.V., Varyasin V.V., Bykanova A.V., Mishnev O.D., Berezovsky Yu.S., Tishkevich O.A., Gomzikova E.A., Chernyaev A.L., Khovanskaya T.N. Lung pathology of COVID-19 in Moscow. Arkhiv patologii = Archive of Pathology. 2020;82(4):32–40. [In Russian]. doi: 10.17116/patol20208204132
18. Wölfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Müller M.A., Niemeyer D., Jones T.C., Vollmar P., Rothe C., … Wendtner C. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465–469. doi: 10.1038/s41586-020-2196-x
19. Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W., Chen H., Ding X., Zhao H., Zhang H., … Zhang S. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi: 10.1056/NEJMc2007575
20. Rajah M.M., Bernier A., Buchrieser J., Schwartz O. The mechanism and consequences of SARS-CoV-2 spike-mediated fusion and syncytia formation. J. Mol. Biol. 2022;434(6):167280. doi: 10.1016/j.jmb.2021.167280
21. Bussani R., Schneider E., Zentilin L., Collesi C., Ali H., Braga L., Volpe M.C., Colliva A., Zanconati F., Berlot G., … Giacca M. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine. 2020;61:103104. doi: 10.1016/j.ebiom.2020.103104
22. Dhakal S., Ruiz-Bedoya C.A., Zhou R., Creisher P.S., Villano J.S., Littlefield K., Ruelas Castillo J., Marinho P., Jedlicka A.E., … Johns Hopkins COVID-19 Hamster Study Group. Sex differences in lung imaging and SARS-CoV-2 antibody responses in a COVID-19 golden syrian hamster model. mBio. 2021;12(4):e0097421. doi: 10.1128/mBio.00974-21
23. Elderman M., Hugenholtz F., Belzer C., Boekschoten M., van Beek A., de Haan B., Savelkoul H., de Vos P., Faas M. Sex and strain dependent differences in mucosal immunology and microbiota composition in mice. Biol. Sex. Differ. 2018;9(1):1–18. doi: 10.1186/s13293-018-0186-6
24. Marik P.E., DePerrior S.E., Ahmad Q., Dodani S. Gender-based disparities in COVID-19 patient outcomes. J. Investig. Med. 2021:jim-2020– 001641. doi: 10.1136/jim-2020-001641
25. Michita R.T., Mysorekar I.U. Golden syrian hamsters as a model for revisiting the role of biological sex differences in SARS-CoV-2 infection. mbio. 2021;12(6):e0184821. doi: 10.1128/mBio.01848-21
26. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., … Wang F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420–422. doi: 10.1016/S2213-2600(20)30076-X
27. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., … Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi: 10.1001/jama.2020.1585
28. Iwatsuki-Horimoto K., Kiso M., Ito M., Yamayoshi S., Kawaoka Y. Sensitivity of rodents to SARSCoV-2: Gerbils are susceptible to SARS-CoV-2, but guinea pigs are not. Npj Viruses. 2024;2(1):59. doi: 10.1038/s44298-024-00068-8
29. Wei C., Datta P.K., Siegerist F., Li J., Yashwanth S., Koh K.H., Kriho N.W., Ismail A., Luo S., … Reiser J. SuPAR mediates viral response proteinuria by rapidly changing podocyte function. Nat. Commun. 2023;14(1):4414. doi: 10.1038/s41467-023-40165-5
30. Park C., Hwang I.Y., Yan S.L., Vimonpatranon S., Wei D., Van Ryk D., Girard A., Cicala C., Arthos J., Kehrl J.H. Murine alveolar macrophages rapidly accumulate intranasally administered SARSCoV-2 Spike protein leading to neutrophil recruitment and damage. Elife. 2024;12:RP86764. doi: 10.7554/eLife.86764
31. Paidi R.K., Jana M., Mishra R.K., Dutta D., Raha S., Pahan K. ACE-2-interacting domain of SARS-CoV-2 (AIDS) peptide suppresses inflammation to reduce fever and protect lungs and heart in mice: Implications for COVID-19 therapy. J. Neuroimmune Pharmacol. 2021;16(1):59–70. doi: 10.1007/s11481-020-09979-8
32. Seneff S., Kyriakopoulos A.M., Nigh G., McCullough P.A. A potential role of the spike protein in neurodegenerative diseases: A narrative review. Cureus. 2023;15(2):e34872. doi: 10.7759/cureus.34872
33. Grobbelaar L.M., Venter C., Vlok M., Ngoepe M., Laubscher G.J., Lourens P.J., Steenkamp J., Kell D.B., Pretorius E. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: Implications for microclot formation in COVID-19. Biosci. Rep. 2021;41(8):BSR20210611. doi: 10.1042/BSR20210611
34. Todorov S.S., Kazmin A.S., Deribas V.Yu., Todorov S.S. Pathological anatomy of lung vessels in COVID-19. Klinicheskaya i eksperimental’naya morfologiya = Clinical and Experimental Morphology. 2022;11(2):6–12. [In Russian]. doi: 10.31088/CEM2022.11.2.6-12
35. Dietert K., Gutbier B., Wienhold S.M., Reppe K., Jiang X., Yao L., Chaput C., Naujoks J., Brack M., Kupke A., … Gruber A.D. Spectrum of pathogen- and model-specific histopathologies in mouse models of acute pneumonia. PLoS One. 2017;12(11):e0188251. doi: 10.1371/journal.pone.0188251
36. Almansa R., Martínez-Orellana P., Rico L., Iglesias V., Ortega A., Vidaña B., Martínez J., Expósito A., Montoya M., Bermejo-Martin J.F. Pulmonary transcriptomic responses indicate a dual role of inflammation in pneumonia development and viral clearance during 2009 pandemic influenza infection. PeerJ. 2017;5:e3915. doi: 10.7717/peerj.3915