Peculiarities of psammoma bodies distribution in the human pineal gland: a new approach to determining the functional significance of pineal gland calcifications
https://doi.org/10.18699/SSMJ20250411
Abstract
The pineal gland is a neuroendocrine gland that synchronizes the functional activity of body organs with the light regime using the hormone melatonin, which is actively released into the bloodstream at night. Melatonin is synthesized by pinealocytes, the main cell population of the pineal gland, in addition to which there are also astroglia, microglia, and mast cells. Besides, the pineal gland contains psammoma bodies (calcifications), the functional significance of which and the mechanisms of formation have not been determined. The aim of this study was to investigate the occurrence of calcifications in different parts of the human pineal gland (parenchyma, connective tissue trabeculae and capsule) and to describe the relationship of calcifications with astroglial cells and their processes, microgliocytes, mast cells, as well as blood vessels and nerve fibers using appropriate immunohistochemical reactions.
Material and methods. For immunohistochemical examination, antibodies to glial fibrillary acidic protein (GFAP), vimentin, two microglia markers (Iba-1 and TMEM119), mast cell tryptase, tyrosine hydroxylase and von Willebrand factor were used.
Results. Our study revealed calcifications mainly in the central part of the pineal gland, in the lobules among pinealocytes, with their number and size being increased from young to middle age. Processes of astroglial (mainly GFAP-, but not vimentin-containing) cells tightly envelop psammoma bodies. No relationship was found between the location of calcium deposits and blood vessels, tyrosine hydroxylase-immunoreactive nerve fibers, microgliocytes or mast cells. Prevalence of activated microglia and degranulating mast cells was not observed. Tyrosine hydroxylase-immunoreactive nerve fibers were identified for the first time in the human pineal gland.
Conclusions. The obtained data indicate that psammoma bodies are normal and, apparently, obligatory components of the adult human pineal gland, the formation of which is associated with pinealocytes and/or astrocytes, but not with blood vessels, nerve fibers, microglia or mast cells. The possible functional role of calcifications in the human pineal gland may be associated with the functional activity of pinealocytes.
Keywords
About the Authors
D. A. SufievaRussian Federation
Dina A. Sufieva, candidate of biological sciences
197022, Saint Petersburg, Academika Pavlov st., 12D
E. A. Fedorova
Russian Federation
Elena A. Fedorova, candidate of biological sciences
197022, Saint Petersburg, Academika Pavlov st., 12D
I. P. Grigorev
Russian Federation
Igor P. Grigorev, candidate of biological sciences
197022, Saint Petersburg, Academika Pavlov st., 12D
D. E. Korzhevskii
Russian Federation
Dmitrii E. Korzhevskii, doctor of medical sciences, professor
197022, Saint Petersburg, Academika Pavlov st., 12D
References
1. Sufieva D.A., Fedorova E.A., Yakovlev V.S., Grigorev I.P. Immunohistochemical study of human pineal vessels. Meditsinskiy akademicheskiy zhurnal = Medical Academic Journal. 2023;23(2):109–118. [In Russian]. doi: 10.17816/MAJ352563
2. Duvernoy H.M., Parratte B., Tatu L., Vuillier F. The human pineal gland: relationships with surrounding structures and blood supply. Neurol. Res. 2000;22(8):747– 790. doi: 10.1080/01616412.2000.11740753
3. Møller M., Baeres F.M. The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res. 2002;309(1):139–150. doi: 10.1007/s00441-002-0580-5
4. Coon S.L., Fu C., Hartley S.W., Holtzclaw L., Mays J.C., Kelly M.C., Kelley M.W., Mullikin J.C., Rath M.F., Savastano L.E., Klein D.C. Single cell sequencing of the pineal gland: the next chapter. Front. Endocrinol. (Lausanne). 2019;10:590. doi: 10.3389/fendo.2019.00590
5. Stehle J.H., Saade A., Rawashdeh O., Ackermann K., Jilg A., Sebesteny T., Maronde E. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J. Pineal Res. 2011;51(1):17–43. doi: 10.1111/j.1600-079X.2011.00856.x
6. Grigorev I.P., Fedorova E.A., Sufieva D.A., Korzhevskii D.E. Immunohistochemical studies of cell organization in the human epiphysis. Morfologiya = Morphology. 2021;51(4):546–552. [In Russian]. doi: 10.34922/AE.2020.158.4.003
7. Sufieva D.A., Fedorova E.A., Yakovlev V.S., Korzhevskii D.E., Grigorev I.P. GFAP- and vimentin- immunopositive structures in human pineal gland. Cell and Tissue Biology. 2023;17(4):406–413. doi: 10.1134/S1990519X23040120
8. Alcolado J.C., Moore I.E., Weller R.O. Calcification in the human choroid plexus, meningiomas and pineal gland. Neuropathol. Appl. Neurobiol. 1986;12(3):235–250. doi: 10.1111/j.1365-2990.1986.tb00137.x
9. Bukreeva I., Junemann O., Cedola A., Brun F., Longo E., Tromba G., Wilde F., Chukalina M.V., Krivonosov Y.S., Dyachkova I.G., … Asadchikov V.E. Micromorphology of pineal gland calcification in age-related neurodegenerative diseases. Med. Phys. 2023;50(3):1601–1613. doi: 10.1002/mp.16080
10. Sufieva D., Fedorova E.A., Yakovlev V.S., Grigorev I.P., Korzhevskii D.E. Microglia and macrophages in human pineal gland. Rossiyskiy meditsinskiy zhurnal = Medical Journal of the Russian Federation. 2024;30(5):442–450. [In Russian].
11. Fedorova E.A., Sufieva D.A., Grigorev I.P., Korzhevskii D.E. Mast cells of the human pineal gland. Advances in Gerontology. 2019;9(1):62–66. doi: 10.1134/S2079057019010053
12. Maslinska D., Laure-Kamionowska M., Deregowski K., Maslinski S. Association of mast cells with calcification in the human pineal gland. Folia Neuropathol. 2010;48(4):276–282.
13. Pollice L., Colonna M., Losacco T., Barbera V. Histological changes of the human pineal gland with regard to age variations and with particular reference to mast cell component behaviour. Ric. Clin. Lab. 1974;4(1-4):892–913. doi: 10.1007/BF03055088
14. Bhatt B.P. Evaluation of intracranial physiological calcifications in computed tomography. Radiography Open. 2023;9(1):50–59. doi: 10.7577/radopen.5205
15. Daghighi M.H., Rezaei V., Zarritan S., Pourfathi H. Intracranial physiological calcifications in adults on computed tomography in Tabriz, Iran. Folia Morph. (Warsz). 2007;66(2):115–119.
16. Jotania B.M., Patel S.V., Patel S.M., Patel P., Patel S.M., Singhal R. Study of age related calcifications in pineal gland, choroid plexus and falx cerebri based on cranio-cerebral computed tomograms. Int. J. Res. Med. 2014;3(3);1–7.
17. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., … Cardona A. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019
18. Wurtman R.J., Axelrod J., Barchas J.D. Age and enzyme activity in the human pineal. J. Clin. Endocrinol. Metab. 1964;24:299–301. doi: 10.1210/jcem24-3-299
19. Süzen M., Dilaver E., Uckan S. Evaluation of prevalence and dimension of pineal gland calcification by cone-beam computed tomography (CBCT). Cumhuriyet Dent. J. 2022;25(3):258–262. doi: 10.7126/cumudj.1111722
20. Bersani G., Garavini A., Taddei I., Tanfani G., Nordio M., Pancheri P. Computed tomography study of pineal calcification in schizophrenia. Eur. Psychiatry. 1999;14(3):163–166. doi: 10.1016/S0924-9338(99)80735-4
21. Matsuoka T., Oya N., Imai A., Sun W., Kitabayashi Y., Akazawa K., Yamada K., Ikeda K., Matoba S., Narumoto J. Intracranial calcifications associated with factors related and unrelated to atherosclerosis in older people: A community dwelling cohort study. Heliyon. 2024;10(9):e30011. doi: 10.1016/j.heliyon.2024.e30011
22. Beker-Acay M., Turamanlar O., Horata E., Unlu E., Fidan N., Oruc S. Assessment of pineal gland volume and calcification in healthy subjects: Is it related to aging? J. Belg. Soc. Radiol. 2016;100(1):13. doi: 10.5334/jbr-btr.892
23. Uduma F.U., Fokam P., Okere P.C.N., Motah M. Incidence of physiologicalpineal gland and choroid plexus calcifications incraniocerebral computed tomograms in Douala, Cameroon. Glob. J. Med. Res. 2011;11:5–11.
24. Serindere M., Polat G. Intracranial physiological calcifications: A computed tomography study. Imaging. 2023;15(2):23–30. doi: 10.1556/1647.2023.00114
25. Kiraz M. The relationship with age and gender of intracranial physiological calcifications: a study from Corum, Turkey. Ann. Med. Res. 2021;28(9):1775– 1780. doi: 10.5455/annalsmedres.2020.10.1022
26. Fan K.J. Pineal calcification among black patients. J. Natl. Med. Assoc. 1983;75(8):765–769.
27. Pal B., Ghosal A.K., Minj A.P., Ghosh R.K. Comparative histomorphological study of the pineal gland in human and fowl. Al Ameen J. Med. Sci. 2013;6(1):80–84.
28. Yuneman O.A. Morphological organization of pineal gland and third ventricle choroid plexus of human brain. Morfologicheskiye vedomosti = Morphological Newsletter. 2012;(3):97–100. [In Russian].
29. Koshy S., Vettivel S.K. Varying appearances of calcification in human pineal gland: a light microscopic study. J. Anat. Soc. India. 2001;50(1):17–18.
30. Kado M., Yoshida A., Hira Y., Sakai Y., Matsushima S. Light and electron microscopic immunocytochemical study on the innervation of the pineal gland of the tree shrew (Tupaia glis), with special reference to peptidergic synaptic junctions with pinealocytes. Brain Res. 1999;842(2):359–375. doi: 10.1016/s0006-8993(99)01856-9
31. Nowicki M., Wojtkiewicz J., Seremak B., Sulik M., Ostaszewski J., Lewczuk B., Majewski M., Przybylska-Gornowicz B. Specific distribution pattern of nerve fibers containing catecholamine-synthesizing enzymes, neuropeptide Y (NPY) and C-terminal flanking peptide of NPY (CPON) in the pineal gland of the chinchilla (Chinchilla laniger) – an immunohistochemical study. Folia Histochem. Cytobiol. 2003;41(4):193– 200.
32. Scharenberg, K., Liss, L. The histologic structure of the human pineal body. Prog. Brain Res. 1965;10:193–217. doi: 10.1016/s0079-6123(08)63452-4
33. Cozzi B. Cell types in the pineal gland of the horse: an ultrastructural and immunocytochemical study. Anat. Rec. 1986;216(2):165–174. doi: 10.1002/ar.1092160208
34. Milin J. Stress-reactive response of the gerbil pineal gland: concretion genesis. Gen. Comp. Endocrinol. 1998;110(3):237–251. doi: 10.1006/gcen.1998.7069
35. Butt A., Verkhratsky A. Neuroglia: realising their true potential. Brain Neurosci. Adv. 2018;2:2398212818817495. doi: 10.1177/2398212818817495