Молекулярные звенья патогенеза эндометриоза – потенциальные мишени диагностики и таргетной терапии: обзор литературы
https://doi.org/10.18699/SSMJ20250408
Аннотация
Эндометриоз является одним из самых распространенных гинекологических заболеваний. Его этиология и патогенез на сегодняшний день не установлены. Актуальными проблемами также являются диагностика и лечение эндометриоза. Существующие теории не объясняют в полной мере причины возникновения и механизмы развития данного заболевания, что не позволяет разработать максимально эффективные тактики лечения и профилактики эндометриоза. Решению этих задач посвящено большое количество современных исследований, среди которых наиболее актуальным является изучение роли различных биомолекул в развитии эндометриоидной болезни. В данном обзоре мы обобщили современные данные по некоторым биомолекулам, которые могут играть важную роль в возникновении эндометриоза: факторам хронического воспаления (М2-ассоциированные факторы, аргиназа-1, CD11b), неоваскуляризации (VEGF, HIF-1α, декорин), инвазии (RPLP1, H3K27me3, TWIST1, RON, CD47, TSP1, SIRPα), аутофагии (LC3B-II, р62, Beclin, NLRC5), а также указывающим на выраженную пролиферативную активность, активный метаболизм в клетках эктопического эндометрия (MCT, GLUT) и формирование нервных волокон (NFASC, CHL1, c-Fos). Изучение данных молекул поможет углубить понимание природы и механизма развития заболевания, разработать диагностический набор его маркеров, а также эффективные методы лечения, в том числе таргетной терапии.
Ключевые слова
Об авторах
В. А. ЮмашеваРоссия
Юмашева Валентина Алексеевна
119991, г. Москва, ул. Трубецкая, 8, стр. 2
О. А. Лобанова
Россия
Лобанова Ольга Андреевна
119991, г. Москва, ул. Трубецкая, 8, стр. 2
Н. Б. Парамонова
Россия
Парамонова Нина Борисовна, к.м.н.
119991, г. Москва, ул. Трубецкая, 8, стр. 2
Д. Д. Абашева
Россия
Абашева Дарья Денисовна
119991, г. Москва, ул. Трубецкая, 8, стр. 2
Список литературы
1. Джайнакбаев Н.Т., Оракбай Л.Ж., Иманбаева Ж.А., Бакаева А.Ж. Эпидемиологические аспекты эндометриоза на современном этапе. Вестник КазНМУ. 2020;(4):3–8.
2. Wang Y., Nicholes K., Shih I.M. The origin and pathogenesis of endometriosis. Annu. Rev. Pathol. 2020;15:71–95. doi: 10.1146/annurev-pathmechdis-012419-032654
3. Адамян Л.В., Арсланян К.Н., Логинова О.Н., Манукян Л.М., Харченко Э.И. Иммунологические аспекты эндометриоза: обзор литературы. Лечащий врач. 2020;(4):37. doi: 10.26295/OS.2020.29.10.007
4. Burney R.O., Giudice L.C. Pathogenesis and pathophysiology of endometriosis. Fertil. Steril. 2012;98(3):511–519. doi: 10.1016/j.fertnstert.2012.06.029
5. Lamceva J., Uljanovs R., Strumfa I. The main theories on the pathogenesis of endometriosis. Int. J. Mol. Sci. 2023;24(5):4254. doi: 10.3390/ijms24054254
6. Levander G., Normann P. The pathogenesis of endometriosis; an experimental study. Acta Obstet. Gynecol. Scand. 1955;34(4):366–398. doi: 10.3109/00016345509158287
7. Gordts S., Koninckx P., Brosens I. Pathogenesis of deep endometriosis. Fertil. Steril. 2017;108(6):872– 885.e1. doi: 10.1016/j.fertnstert.2017.08.036
8. Signorile P.G., Viceconte R., Baldi A. New insights in pathogenesis of endometriosis. Front. Med. (Lausanne). 2022;9:879015. doi: 10.3389/fmed.2022.879015
9. Brosens I., Benagiano G. Is neonatal uterine bleeding involved in the pathogenesis of endometriosis as a source of stem cells? Fertil. Steril. 2013;100(3):622– 623. doi: 10.1016/j.fertnstert.2013.04.046
10. Chan R.W.S., Schwab K.E., Gargett C.E. Clonogenicity of human endometrial epithelial and stromal cells. Biol. Reprod. 2004;70(6):1738–1750. doi: 10.1095/biolreprod.103.024109
11. Becker C.M., Beaudry P., Funakoshi T., Benny O., Zaslavsky A., Zurakowski D., Folkman J., D’Amato R.J., Ryeom S. Circulating endothelial progenitor cells are up-regulated in a mouse model of endometriosis. Am. J. Pathol. 2011;178(4):1782–1791. doi: 10.1016/j.ajpath.2010.12.037
12. Nezhat C., King L.P., Paka C., Odegaard J., Beygui R. Bilateral thoracic endometriosis affecting the lung and diaphragm. JSLS. 2012;16(1):140–142. doi: 10.4293/108680812X13291597716384
13. Figueira P.G.M., Abrão M.S., Krikun G., Taylor H.S. Stem cells in endometrium and their role in the pathogenesis of endometriosis. Ann. N.Y. Acad. Sci. 2011;1221(1):10–17. doi: 10.1111/j.1749-6632.2011.05969.x
14. Huniadi C.A., Pop O.L., Antal T.A., Stamatian F. The effects of ulipristal on Bax/Bcl-2, cytochrome c, Ki-67 and cyclooxygenase-2 expression in a rat model with surgically induced endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013;169(2):360– 365. doi: 10.1016/j.ejogrb.2013.03.022
15. Bergman-Larsson J., Gustafsson S., Méar L., Huvila J., Tolf A., Olovsson M., Pontén F., Edqvist P.H.D. Combined expression of HOXA11 and CD10 identifies endometriosis versus normal tissue and tumors. Ann. Diagn. Pathol. 2022;56:151870. doi: 10.1016/j.anndiagpath.2021.151870
16. Luo J., Song Z., Zhang T., Chu K., Li J., Zhou J., Lin J. Upregulation of h-TERT and Ki-67 in ectopic endometrium is associated with recurrence of endometriosis. J. Zhejiang Univ. Sci. B. 2022;23(2):158–163. doi: 10.1631/jzus.B2100502
17. Dinulescu D.M., Ince T.A., Quade B.J., Shafer S.A., Crowley D., Jacks T. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat. Med. 2005;11(1):63– 70. doi: 10.1038/nm1173
18. Mitranovici M.I., Costachescu D., Voidazan S., Munteanu M., Buicu C.F., Oală I.E., Ivan V., Apostol A., Melinte I.M., Crisan A., Pușcașiu L., Micu R. Exploring the shared pathogenesis mechanisms of endometriosis and cancer: stemness and targeted treatments of its molecular pathways-a narrative review. Int. J. Mol. Sci. 2024;25(23):12749. doi: 10.3390/ijms252312749
19. Cui Z., Bhandari R., Lei Q., Lu M., Zhang L., Zhang M., Sun F., Feng L., Zhao S. Identification and exploration of novel macrophage M2-related biomarkers and potential therapeutic agents in endometriosis. Front. Mol. Biosci. 2021;8:656145. doi: 10.3389/fmolb.2021.656145
20. Gou Y., Li X., Li P., Zhang H., Xu T., Wang H., Wang B., Ma X., Jiang X., Zhang Z. Estrogen receptor β upregulates CCL2 via NF-κB signaling in endometriotic stromal cells and recruits macrophages to promote the pathogenesis of endometriosis. Hum. Reprod. 2019;34(4):646–658. doi: 10.1093/humrep/dez019
21. Wu J., Xie H., Yao S., Liang Y. Macrophage and nerve interaction in endometriosis. J. Neuroinflammation. 2017;14(1):53. doi: 10.1186/s12974-017-0828-3
22. Hogg C., Horne A.W., Greaves E. Endometriosis-associated macrophages: origin, phenotype, and function. Front. Endocrinol. (Lausanne). 2020;11:7. doi: 10.3389/fendo.2020.00007
23. Zhang T., He Y., Man G.C.W., Ding Y., Wang C.C., Chung J.P.W. Myeloid-derived suppressor cells: A new emerging player in endometriosis. Int. Rev. Cell. Mol. Biol. 2023;375:191–220. doi: 10.1016/bs.ircmb.2022.11.004
24. Martí I. Líndez A.A., Reith W. Arginine-dependent immune responses. Cell. Mol. Life Sci. 2021;78(13):5303–5324. doi: 10.1007/s00018-021-03828-4
25. Sun Y., Shao J., Jiang F., Wang Y., Yan Q., Yu N., Zhang J., Zhang J., Li M., He Y. CD33+ CD14+ CD11b+ HLA-DR- monocytic myeloid-derived suppressor cells recruited and activated by CCR9/CCL25 are crucial for the pathogenic progression of endometriosis. Am. J. Reprod. Immunol. 2019;81(1):e13067. doi: 10.1111/aji.13067
26. Satake E., Koga K., Takamura M., Izumi G., Elsherbini M., Taguchi A., Makabe T., Takeuchi A., Harada M., Hirata T., … Osuga Y. The roles of polymorphonuclear myeloid-derived suppressor cells in endometriosis. J. Reprod. Immunol. 2021;148:103371. doi: 10.1016/j.jri.2021.103371
27. Lu Z., Wang H., Gong Z., Guo P., Li C., Bi K., Li X., Chen Y., Pan A., Xu Y., … Cao Y. The enrichment of Arg1+ILC2s and ILCregs facilitates the progression of endometriosis: A preliminary study. Int. Immunopharmacol. 2023;121:110421. doi: 10.1016/j.intimp.2023.110421
28. Pliszkiewicz M., Czystowska-Kuzmicz M., Soroczynska K., Siekierski B.P., Safranow K. Determination of Serum Arginase-1 Concentrations and Serum Arginase Activity for the Non-Invasive Diagnosis of Endometriosis. J. Clin. Med. 2024;13(5):1489. doi: 10.3390/jcm13051489
29. Albaugh V.L., Pinzon-Guzman C., Barbul A. Arginine-dual roles as an onconutrient and immunonutrient. J. Surg. Oncol. 2017;115(3):273–280. doi: 10.1002/jso.24490
30. Brubel R., Bokor A., Pohl A., Schilli G.K., Szereday L., Bacher-Szamuel R., Rigo J., Polgar B. Serum galectin-9 as a noninvasive biomarker for the detection of endometriosis and pelvic pain or infertility-related gynecologic disorders. Fertil. Steril. 2017;108(6):1016–1025.e2. doi: 10.1016/j.fertnstert.2017.09.008
31. Chen H., Qin S., Lei A., Li X., Gao Q., Dong J., Xiao Q., Zhou J. Expansion of monocytic myeloid-derived suppressor cells in endometriosis patients: A pilot study. Int. Immunopharmacol. 2017;47:150–158. `
32. Li W.N., Hsiao K.Y., Wang C.A., Chang N., Hsu P.L., Sun C.H., Wu S.R., Wu M.H., Tsai S.J. Extracellular vesicle-associated VEGF-C promotes lymphangiogenesis and immune cells infiltration in endometriosis. Proc. Natl. Acad. Sci. USA. 2020;117(41):25859–25868. doi: 10.1073/pnas.1920037117
33. Zani A.C.T., Valerio F.P., Meola J., da Silva A.R., Nogueira A.A., Candido-Dos-Reis F.J., Poli-Neto O.B., Rosa-E-Silva J.C. Impact of bevacizumab on experimentally induced endometriotic lesions: angiogenesis, invasion, apoptosis, and cell proliferation. Reprod. Sci. 2020;27(10):1943–1950. doi: 10.1007/s43032-020-00213-7
34. Ozer H., Boztosun A., Açmaz G., Atilgan R., Akkar O.B., Kosar M.I. The efficacy of bevacizumab, sorafenib, and retinoic acid on rat endometriosis model. Reprod. Sci. 2013;20(1):26–32. doi: 10.1177/1933719112452941
35. Bouquet de Joliniere J., Fruscalzo A., Khomsi F., Stochino Loi E., Cherbanyk F., Ayoubi J.M., Feki A. Antiangiogenic therapy as a new strategy in the treatment of endometriosis? the first case report. Front. Surg. 2021;8:791686. doi: 10.3389/fsurg.2021.791686
36. Титова О.Н., Кузубова Н.А., Лебедева Е.С. Роль гипоксийного сигнального пути в адаптации клеток к гипоксии. РМЖ. Мед. обоз. 2020;4(4):207– 213. doi: 10.32364/2587-6821-2020-4-4-207-213
37. Zhang F., Liu X.L., Wang W., Dong H.L., Xia Y.F., Ruan L.P., Liu L.P. Expression of MMIF, HIF-1α and VEGF in serum and endometrial tissues of patients with endometriosis. Curr. Med. Sci. 2018;38(3):499–504. doi: 10.1007/s11596-018-1906-1
38. Wang L., Liang J., Bi S., Li Y., Zhang W., Xiwen W., Liu Y., Liu H. Role of GLI1 in hypoxia-driven endometrial stromal cell migration and invasion in endometriosis. Comput. Math. Methods Med. 2022;2022:6890790. doi: 10.1155/2022/6890790
39. Wu Y., Yang R., Lan J., Wu Y., Huang J., Fan Q., You Y., Lin H., Jiao X., Chen H., Cao C., Zhang Q. Iron overload modulates follicular microenvironment via ROS/HIF-1α/FSHR signaling. Free Radic. Biol. Med. 2023;196:37–52. doi: 10.1016/j.freeradbiomed.2022.12.105
40. Xu R., Wang F., Yang H., Wang Z. Action sites and clinical application of HIF-1α inhibitors. Molecules. 2022;27(11):3426. doi: 10.3390/molecules27113426
41. Neill T., Schaefer L., Iozzo R.V. Decorin: a guardian from the matrix. Am. J. Pathol. 2012;181(2):380– 387. doi: 10.1016/j.ajpath.2012.04.029
42. Aydin G.A., Ayvaci H., Koc N., Tarhan N., Demirci O. The relationship between decorin and VEGF in endometriosis. J. Coll. Physicians Surg. Pak. 2021;31(11):1285–1290. doi: 10.29271/jcpsp.2021.11.1285
43. Chen P., Yao M., Fang T., Ye C., Du Y., Jin Y., Wu R. Identification of NFASC and CHL1 as two novel hub genes in endometriosis using integrated bioinformatic analysis and experimental verification. Pharmgenomics Pers. Med. 2022;15:377–392. doi: 10.2147/PGPM.S354957
44. Zhang C., Wu W., Ye X., Ma R., Luo J., Zhu H., Chang X. Aberrant expression of CHL1 gene and long non-coding RNA CHL1-AS1, CHL1-AS2 in ovarian endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019;236:177–182. doi: 10.1016/j.ejogrb.2019.03.020
45. Peng B., Alotaibi F.T., Sediqi S., Bedaiwy M.A., Yong P.J. Role of interleukin-1β in nerve growth factor expression, neurogenesis and deep dyspareunia in endometriosis. Hum. Reprod. 2020;35(4):901–912. doi: 10.1093/humrep/deaa017
46. Pan H., Zhang P., Li J.R., Wang H., Jin M.F., Feng C., Huang H.F. c-Fos-regulated matrix metalloproteinase-9 expression is involved in 17β-estradiolpromoted invasion of human endometrial stromal cell. Curr. Mol. Med. 2016;16(3):266–275. doi: 10.2174/1566524016666160225153454
47. He Z., Xu Q., Wang X., Wang J., Mu X., Cai Y., Qian Y., Shao W., Shao Z. RPLP1 promotes tumor metastasis and is associated with a poor prognosis in triple-negative breast cancer patients. Cancer Cell. Int. 2018;18:170. doi: 10.1186/s12935-018-0658-0
48. Alali Z., Graham A., Swan K., Flyckt R., Falcone T., Cui W., Yang X., Christianson J., Nothnick W.B. 60S acidic ribosomal protein P1 (RPLP1) is elevated in human endometriotic tissue and in a murine model of endometriosis and is essential for endometriotic epithelial cell survival in vitro. Mol. Hum. Reprod. 2020;26(1):53–64. doi: 10.1093/molehr/gaz065
49. Xu P., Ding S., Zhu L., Le F., Huang X., Tian Y., Zhang X. Elevated RON protein expression in endometriosis and disease-associated ovarian cancers. Arch. Gynecol. Obstet. 2017;295(3):631–639. doi: 10.1007/s00404-016-4248-x
50. Yu Q., Wang J., Li T., Guo X., Ding S., Che X., Zhu L., Peng Y., Xu X., Zou G., Zhang X. Recepteur d’origine nantais contributes to the development of endometriosis via promoting epithelial-mesenchymal transition of a endometrial epithelial cells. J. Cell. Mol. Med. 2021;25(3):1601–1612. doi: 10.1111/jcmm.16261
51. Ekiz H.A., Lai S.-C.A., Gundlapalli H., Haroun F., Williams M.A., Welm A.L. Inhibition of RON kinase potentiates anti-CTLA-4 immunotherapy to shrink breast tumors and prevent metastatic outgrowth. Oncoimmunology. 2018;7(9):e1480286. doi: 10.1080/2162402X.2018.1480286
52. Colón-Caraballo M., Monteiro J.B., Flores I. H3k27me3 is an epigenetic mark of relevance in endometriosis. Reprod. Sci. 2015;22(9):1134–1142. doi: 10.1177/1933719115578924
53. Liu X., Zhang Q., Guo S.W. Histological and immunohistochemical characterization of the similarity and difference between ovarian endometriomas and deep infiltrating endometriosis. Reprod. Sci. 2018;25(3):329–340. 2018;25(3):329–40. doi: 10.1177/1933719117718275
54. Colón-Caraballo M., Torres-Reverón A., Soto-Vargas J.L., Young S.L., Lessey B., Mendoza A., Urrutia R., Flores I. Effects of histone methyltransferase inhibition in endometriosis. Biol. Reprod. 2018; 99(2):293–307. doi: 10.1093/biolre/ioy030
55. Xiaolei T., Jiang M., Yang N., Jing Z. Effects of EZH2 on invasion and migration of endometrial stromal cells in endometriosis patients by regulating PCDH10 gene H3K27 methylation. Altern. Ther. Health. Med. 2023;29(2):42–49.
56. Proestling K., Birner P., Balendran S., Nirtl N., Marton E., Yerlikaya G., Kuessel L., Reischer T., Wenzl R., Streubel B., Husslein H. Enhanced expression of the stemness-related factors OCT4, SOX15 and TWIST1 in ectopic endometrium of endometriosis patients. Reprod. Biol. Endocrinol. 2016;14(1):81. doi: 10.1186/s12958-016-0215-4
57. Li J., Ma J., Fei X., Zhang T., Zhou J., Lin J. Roles of cell migration and invasion mediated by Twist in endometriosis. J. Obstet. Gynaecol. Res. 2019;45(8):1488–1496. doi: 10.1111/jog.14001
58. Li J., Yan S., Li Q., Huang Y., Ji M., Jiao X., Yuan M., Wang G. Macrophage-associated immune checkpoint CD47 blocking ameliorates endometriosis. Mol. Hum. Reprod. 2022;28(5):gaac010. doi: 10.1093/molehr/gaac010
59. Hu L., Zhang J., Lu Y., Fu B., Hu W. Estrogen receptor beta promotes endometriosis progression by upregulating CD47 expression in ectopic endometrial stromal cells. J. Reprod. Immunol. 2022;151:103513. doi: 10.1016/j.jri.2022.103513
60. Liu Y., Li M., Wei C., Tang L., Sheng Y., Liu Y., Li D., Ding D., Qiu J., Zhu X. TSP1-CD47-SIRPα signaling facilitates the development of endometriosis by mediating the survival of ectopic endometrium. Am. J. Reprod. Immunol. 2020;83(6):e13236. doi: 10.1111/aji.13236
61. Sasamoto N., Ngo L., Vitonis A.F., Dillon S.T., Prasad P., Laufer M.R., As-Sanie S., Schrepf A., Missmer S.A., Libermann T.A., Terry K.L. Plasma proteins and persistent postsurgical pelvic pain among adolescents and young adults with endometriosis. Am. J. Obstet. Gynecol. 2024;231(2):240.e1-240.e11. doi: 10.1016/j.ajog.2024.03.005
62. Bahrami A., Ayen E., Razi M., Behfar M. Effects of atorvastatin and resveratrol against the experimental endometriosis; evidence for glucose and monocarboxylate transporters, neoangiogenesis. Life Sci. 2021;272:119230. doi: 10.1016/j.lfs.2021.119230
63. McKinnon B., Bertschi D., Wotzkow C., Bersinger N.A., Evers J., Mueller M.D. Glucose transporter expression in eutopic endometrial tissue and ectopic endometriotic lesions. J. Mol. Endocrinol. 2014;52(2):169–179. doi: 10.1530/JME-13-0194
64. Николаева Е.А., Тарачкова Е.В., Шейх Ж.В., Тюрин И.Е. Роль ПЭТ/КТ в онкогинекологии (обзор литературы). Мед. визуализ. 2023;27(1):145–157. doi: 10.24835/1607-0763-1198
65. Li M., Lu M.S., Liu M.L., Deng S., Tang X.H., Han C., Wang H.L., Li P.L. An observation of the role of autophagy in patients with endometriosis of different stages during secretory phase and proliferative phase. Curr. Gene Ther. 2018;18(5):286–295. doi: 10.2174/1566523218666181008155039
66. Kong Z., Yao T. Role for autophagy-related markers Beclin-1 and LC3 in endometriosis. BMC Womens Health. 2022;22(1):264. doi: 10.1186/s12905-022-01850-7
67. Zhan L., Yao S., Sun S., Su Q., Li J., Wei B. NLRC5 and autophagy combined as possible predictors in patients with endometriosis. Fertil. Steril. 2018;110(5):949–956. doi: 10.1016/j.fertnstert.2018.06.028
68. He R., Liu X., Zhang J., Wang Z., Wang W., Fu L., Fan Y., Sun S., Cao Y., Zhan L., Shui L. NLRC5 Inhibits Inflammation of Secretory Phase Ectopic Endometrial Stromal Cells by Up-Regulating Autophagy in Ovarian Endometriosis. Front. Pharmacol. 2020;11:1281. doi: 10.3389/fphar.2020.01281