Bioelectrical impedance of the left ventricle of the rat heart during physical exercise of different durations
https://doi.org/10.18699/SSMJ20250312
Abstract
Regular physical exercise causes morphofunctional changes in the heart depending on the load.
The aim of our study was to identify changes in the bioimpedance spectroscopy parameters of the left ventricle of the heart in rats after physical exercise (swimming) of different duration.
Material and methods. Morphological and bioimpedance assessment of the left ventricle of the heart was performed in male rats that underwent a 12-week swimming course and in intact animals. Two groups of rats were subjected to swimming (5 times a week): the experimental (200 minutes a day) and the control (5 minutes a day).
Results and discussion. Histological studies have shown an increase in the diameter of cardiomyocytes in the left ventricle of the heart in animals of the experimental and control groups compared to intact rats. In animals subjected to prolonged physical exercise, a significant increase in the reactance of the bioelectrical impedance of the left ventricle of the heart at an electric current frequency of 50 kHz was revealed compared to those swimming for five minutes a day, indicating greater changes in muscle tissue volume. An increase in the active resistance of the bioelectrical impedance of the left ventricle of the heart was noted along with a smaller volume of connective tissue in the rats of the experimental group compared to the control. The amplitude of the bioelectrical impedance of the myocardium of the left ventricle of the heart in rats of the experimental group was greater than in animals of the control (at 30 and 50 kHz) and intact (at 100 kHz) groups, which indicates differences in the volume of intercellular and intracellular space.
Conclusions. In rats under the influence of prolonged physical exercise by swimming for 12 weeks, morphometric and bioimpedance changes in the left ventricle of the heart associated with physiological remodeling of the myocardium were revealed.
About the Authors
N. L. KolomeyetsRussian Federation
Natalia L. Kolomeyets, candidate of physico-mathematical sciences
167982; Kommunisticheskaya st., 24; Syktyvkar
A. G. Ivonin
Russian Federation
Alexey G. Ivonin, candidate of biological sciences
167982; Kommunisticheskaya st., 24; Syktyvkar
A. S. Gulyaeva
Russian Federation
Anna S. Gulyaeva, candidate of biological sciences
167982; Kommunisticheskaya st., 24; Syktyvkar
I. M. Roshchevskaya
Russian Federation
Irina M. Roshchevskaya, doctor of biological sciences, corresponding member of RAS
167982; Kommunisticheskaya st., 24; Syktyvkar
References
1. Bei Y., Wang L., Ding R., Che L., Fan Z., Gao W., Liang Q., Lin S., Liu S., Lu X., … Xiao J. Animal exercise studies in cardiovascular research: Current knowledge and optimal design - A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors’ Association. J. Sport Health. Sci. 2021;10(6):660–674. doi: 10.1016/j.jshs.2021.08.002
2. Soares D.D.S., Pinto G.H., Lopes A., Caetano D.S.L., Nascimento T.G., Andrades M.E., Clausell N., Rohde L.E.P., Leitão S.A.T., Biolo A. Cardiac hypertrophy in mice submitted to a swimming protocol: influence of training volume and intensity on myocardial renin-angiotensin system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019;316(6):R776–R782. doi: 10.1152/ajpregu.00205.2018
3. Yan Z., Zeng N., Li J., Liao T., Ni G. Cardiac effects of treadmill running at different intensities in a rat model. Front. Physiol. 2021:12:774681. doi: 10.3389/fphys.2021.774681
4. Martins P.C., Moraes M.S., Silva D.A.S. Cell integrity indicators assessed by bioelectrical impedance : A systematic review of studies involving athletes. J. Bodyw. Mov. Ther. 2020;24(1):154–164. doi: 10.1016/j.jbmt.2019.05.017
5. Cebrián-Ponce Á., Irurtia A., Carrasco-Marginet M., Saco-Ledo G., Girabent-Farrés M., Castizo-Olier J. Electrical impedance myography in health and physical exercise : a systematic review and future perspectives. Front. Physiol. 2021;12:740877. doi: 10.3389/fphys.2021.740877
6. Khoury D.S., Naware M., Siou J., Blomqvist A., Mathuria N.S., Wang J., Shih H.T., Nagueh S.F., Panescu D. Ambulatory monitoring of congestive heart failure by multiple bioelectric impedance vectors. J. Am. Coll. Cardiol. 2009;53(12):1075–1081. doi: 10.1016/j.jacc.2008.12.018
7. Tornuev Yu.V., Balakhnin S.M., Preobrazhenskaya V.K., Manvelidze R.A., Ivleva E.K. Bioimpedance measuring myocardium in focal and diffuse injuries of various genesis. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2016;(4):78. [In Russian]. doi: 10.17513/spno.25001
8. Jacobson J.T., Hutchinson M.D., Cooper J.M., Woo Y.J., Shandler R.S., Callans D.J. Tissue-specific variability in human epicardial impedance. J. Cardiovasc. Electrophysiol. 2011;22(4):436–439. doi: 10.1111/j.1540-8167.2010.01929.x
9. Radovits T., Oláh A., Lux Á., Németh B.T., Hidi L., Birtalan E., Kellermayer D., Mátyás C., Szabó G., Merkely B. Rat model of exercise-induced cardiac hypertrophy: hemodynamic characterization using left ventricular pressure-volume analysis. Am. J. Physiol. Heart Circ. Physiol. 2013;305(1):H124–134. doi: 10.1152/ajpheart.00108.2013
10. Sanchez B., Li J., Yim S., Pacheck A., Widrick J.J., Rutkove S.B. Evaluation of electrical impedance as a biomarker of myostatin inhibition in wild type and muscular dystrophy mice. PLoS One. 2015;10(10):e0140521. doi: 10.1371/journal.pone.0140521
11. Kapur K., Taylor R.S., Qi K., Nagy J.A., Li J., Sanchez B., Rutkove S.B. Predicting myofiber size with electrical impedance myography: A study in immature mice. Muscle Nerve. 2018:10.1002/mus.26111. doi: 10.1002/mus.26111
12. Amorós-Figueras G., Jorge E., García-Sánchez T., Bragós R., Rosell-Ferrer J., Cinca J. Recognition of fibrotic infarct density by the pattern of local systolic-diastolic myocardial electrical impedance. Front. Physiol. 2016;7:389. doi: 10.3389/fphys.2016.00389
13. Skourou C., Hoopes P.J., Paulsen K.D. Tissue permittivity. A monitor for progressive tissue fibrosis as observed in bystander tissues following experimental high dose rate irradiation. Cancer Biol. Ther. 2009. 8(23):2223–2229. doi: 10.4161/cbt.8.23.9983
14. Verheule S., Schotten U. Electrophysiological consequences of cardiac fibrosis. Cells. 2021;10(11):3220. doi: 10.3390/cells10113220
15. Protsenko Y.L., Balakin A.A., Kuznetsov D.A., Kursanov A.G., Lisin R.V., Mukhlynina E.A., Lookin O.N. Contractility of right ventricular myocardium in male and female rats during physiological and pathological hypertrophy. Bull. Exp. Biol. Med. 2017;162(3):303–305. doi: 10.1007/s10517-017-3600-x
16. Hastings M.H., Castro C., Freeman R., Abdul Kadir A., Lerchenmüller C., Li H., Rhee J., Roh J.D., Roh K., Singh A.P., ... Rosenzweig A. Intrinsic and extrinsic contributors to the cardiac benefits of exercise. JACC Basic Transl. Sci. 2023;9(4):535–552. doi: 10.1016/j.jacbts.2023.07.011
17. Kolomeyets N.L., Ivonin A.G., Peshkin E.A., Roshchevskaya I.M. Bioelectrical impedance of the left ventricular myocardium, lung in rats after forced swimming training and subsequent detraining. J. Evol. Biochem. Phys. 2023;59(1):69–81. doi: 10.1134/S0022093023010064