Dynamic analysis of obesity formation in rats kept on a high-fat diet
https://doi.org/10.18699/SSMJ20250311
Abstract
The aim of this study was to conduct a comparative analysis of the development of obesity in rats fed a high-fat diet (HDL) for 4 and 7 weeks.
Material and methods. Sexually mature male Wistar rats were used in the work. Control animals were kept on a diet in which fat was 10–11 %, experimental rats – on an HDL, in which fat accounted for 36 % of the caloric content of the daily diet due to the addition of melted pork fat to the food. The mass of organs and adipose tissue, the content of triglycerides, total and cholesterol, high- and low-density lipoproteins, and the activity of alanine and aspartate amino transferase in blood serum were measured. Liver sections were stained with hematoxylin and eosin to assess the relative number of Kupffer cells. An indirect streptavidin peroxidase method was used for immunohistochemical examination of sections.
Results and discussion. In rats kept on HDL for 4 weeks, the following parameters increased in comparison with control animals: body weight by 21 %, mass index of retroperitoneal, epidermal and interscapular brown fat (by 56, 33 and 52 %, respectively), serum triglyceride content by 2.3 times, numerical density of Kupffer cells by 2.1 times, the expression of matrix metalloproteinase 9 in the liver by 2.8 times. After 7 weeks of HDL, alanine amino transferase activity in serum increased by 20 %, the numerical density of Kupffer cells remained 2.1-fold increased, and the expression level of matrix metalloproteinase 9 raised 5-fold relative to control rats.
Conclusions. After 4 weeks of HDL treatment, the rats developed an obesity phenotype, accompanied by negative shifts in the structural and functional state of the liver; after 7 weeks, these negative changes worsened, which allows us to consider the used model of obesity in rats as a tool for studying the effectiveness of approaches to normalizing obesity and related diseases.
Keywords
About the Authors
I. Yu. DeulinRussian Federation
Ilya Yu. Deulin
630117; Timakova st., 2; Novosibirsk
N. A. Palchikova,
Russian Federation
Natalya A. Palchikova, doctor of biological sciences
630117; Timakova st., 2; Novosibirsk
O. P. Molodykh
Russian Federation
Olga P. Molodykh, doctor of biological sciences, professor
630117; Timakova st., 2; Novosibirsk
A. M. Sinyavskaya
Russian Federation
Anna M. Sinyavskaya, candidate of medical sciences
630117; Timakova st., 2; Novosibirsk
A. I. Subbotovskaya
Russian Federation
Anna I. Subbotovskaya, candidate of medical sciences
630117; Timakova st., 2; Novosibirsk
V. G. Selyatitskaya
Russian Federation
Vera G. Selyatitskaya, doctor of biological sciences, professor
630117; Timakova st., 2; Novosibirsk
References
1. Bray G.A., Kim K.K., Wilding J.P.H.; World Obesity Federation. Obesity: a chonic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes. Rev. 2017;18(7):715–723. doi: 10.1111/obr.12551
2. Muller M.J., Gaetjens I., Bosy-Westphal A. Prevention of obesity. In: Handbook of Eating Disosders and Obesity. Eds. S. Herpertz, M. de Zwaan, S. Zipfel. Springer, 2024. P. 509–517. doi: 10.1007/978-3-662-67662-2_68
3. Dasrbre P.D. Endocrine disruptors and obesity. Curr. Obes. Rep. 2017;6(1):18–27. doi: 10.1007/s13679-017-0240-4
4. Pokida A.N., Zybunovskaya N.V. Food culture of the Russian population: results of a sociological suevey. Zdorov’ye naseleniya i sreda obitaniya = Public Health and Life Environment. 2022;30(2):13–22. [In Russian]. doi: 10.35627/2219-5238/2022-30-2-13-22
5. Brondel L., Quilliot D., Mouillot T., Khan N.A., Bastable P., Boggio V., Leloup C., Pénicaud L. Taste of fat and obesity: different hypotheses and our point of view. Nutrients. 2022;14(3):555. doi: 10.3390/nu14030555
6. Drapkina O.M., Eliashevich S.O., Shepel R.N. Obesity as a risk factor for chronic non-communicable diseases. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2016;21(6):73–79. [In Russian]. doi: 10.15829/1560-4071-2016-6-73-79
7. Andreev D.N., Kucheryavyy Yu.A. Obesity as a risk factor for diseases of the digestive system. Terapevticheskiy arkhiv = Therapeutic Archive. 2021;93(8):954–962. [In Russian]. doi: 10.26442/00403660.2021.08.200983
8. Salukhov V.V., Kadin D.V. Obesity as an oncological risk factor. Literature review. Meditsinskiy sovet = Medical Council. 2019;(4):94–102. [In Russian]. doi: 10.21518/2079-701X-2019-4-94-102
9. West D.B., York B. Dietary fat, genetic predisposition, and obesity: lesons from animal models. Am. J. Clin. Nutr. 1996;67(3 suppl):505S–512S. doi: 10.1093/ajcn/67.3.505S
10. Doulberis M., Papaefthymiou A., Polyzos S.A., Katsinelos P., Grigoriadis N., Srivastava D.S., Kountouras J. Rodent models of obesity. Minerva Endocrinol. 2020;45(3):243–263. doi: 10.23736/S0391-1977.19.03058-X
11. Preguiça I., Alves A., Nunes S., Fernandes R., Gomes P., Viana S.D., Reis F. Diet-induced rodent models of obesity-related metabolic disorders - A guide to a translational perspective. Obes. Rev. 2020;21(12):e13081. doi: 10.1111/obr.13081
12. Bayrasheva V.K., Pchelin I.Yu., Egorova A.E., Vasilkova V.N., Kornyushin O.V. Experimental models of alimentary obesity in rats. Juvenis Scientia. 2019;(9-10):8–13. [In Russian]. doi: 10.32415/jscientia.2019.09-10.02
13. Leshchenko D.V., Kostiuk N.V., Belyakova M.B., Egorova E.N., Miniaev M.V., Petroova M.B. Diet-induced animal models of metabolic syndrome (literature review). Verkhnevolzhskiy meditsinskiy zhurnal = Verkhnevolzhsky Medical Journal. 2015; 14(2):34–39. [In Russian].
14. Buettner R., Schölmerich J., Bollheimer L.C. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring). 2007;15(4):798–808. doi: 10.1038/oby.2007.608
15. Bortolin R., Vargas A., Gasparotto J., Chaves P.R., Schnorr C.E., Martinello Kd.B., Silveira A.K., Rabelo T.K., Gelain D.P., Moreira J.C.F. A new animal diet based on human Western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption. Int. J. Obes. (Lond). 2018;42(3):525–534. doi: 10.1038/ijo.2017.225
16. Kotzé-Hörstmann L., Cois A., Johnson R., Mabasa L., Shabalala S., van Jaarsveld P.J., Sadie-Van Gijsen H. Characterization and comparison of the divergent metabolic consequences of high-sugar and high-fat diets in male Wistar rats. Front. Physiol. 2022;13:904366. doi: 10.3389/fphys.2022.904366
17. Krishna K.B., Stefanovic-Racic M., Dedousis N., Sipula I., O’Doherty R.M. Similar degrees of obesity induced by diet or aging cause strikingly diferente immunologic and metabolic outcomes. Physiol. Rep. 2016;4(6):e12708. doi: 10.14814/phy2.12708
18. Salinero A.E., Anderson B.M., Zuloaga K.L. Sex differences in the metabolic effects of diet-induced obesity vary by age of onset. Int. J. Obes. (Lond). 2018;42(5):1088–1091. doi: 10.1038/s41366-018-0023-3
19. de Moura E Dias M., Dos Reis S.A., da Conceição L.L., Sediyama C.M.N.O., Pereira S.S., de Oliveira L.L., Gouveia Peluzio M.D.C., Martinez J.A., Milagro F.I. Diet-induced obesity in animal models: points to consider and influence on metabolic markers. Diabetol. Metab. Syndr. 2021;13(1):32. doi: 10.1186/s13098-021-00647-2
20. Bocharova N.V., Denisenko Yu.K., Novgorodtseva T.P., Kovalevsky D.A. Modeling of non-alcoholic fatty pancreas disease in Wistar rats. Vestnik novykh meditsinskikh tekhnologiy = Journal of New Medical Technologies. 2022;16(3):67–72. [In Russian]. doi: 10.24412/2075-4094-2022-3-3-1
21. Matias A.M., Estevam W.M., Coelho P.M., Haese D., Kobi J.B.B.S., Lima-Leopoldo A.P., Leopoldo A.S. Differential effects of high sugar, high lard or a combination of both on nutritional, hormonal and cardiovascular metabolic profiles of rodents. Nutrients. 2018;10(8):1071. doi: 10.3390/nu10081071
22. 22 Yang H., Youm Y.H., Vandanmagsar B., Rood J., Kumar K.G., Butler A.A., Dixit V.D. Obesity accelerates thymic aging. Blood. 2009;114(18):3803–3812. doi: 10.1182/blood-2009-03-213595
23. Gollisch K.S., Brandauer J., Jessen N., Toyoda T., Nayer A., Hirshman M.F., Goodyear L.J. Effects of exercise training on subcutaneous and visceral adipose tissue in normal- and high-fat diet-fed rats. Am. J. Physiol. Endocrinol. Metab. 2009;297(2):E495–504. doi: 10.1152/ajpendo.90424.2008
24. Ciapaite J., van den Broek N.M., Te Brinke H., Nicolay K., Jeneson J.A., Houten S.M., Prompers J.J. Differential effects of short- and long-term high-fat diet feeding on hepatic fatty acid metabolism in rats. Biochim. Biophys. Acta. 2011;1811(7-8):441–451. doi: 10.1016/j.bbalip.2011.05.005
25. Son H.K., Shin H.W., Jang E.S., Moon B.S., Lee C.H., Lee J.J. Comparison of antiobesity effects between gochujangs produced using different koji products and tabasco hot sauce in rats fed a high-fat diet. J. Med. Food. 2018;21(3):233–243. doi: 10.1089/jmf.2017.4007
26. Krishna K.B., Stefanovic-Racic M., Dedousis N., Sipula I., O’Doherty R.M. Similar degrees of obesity induced by diet or aging cause strikingly different immunologic and metabolic outcomes. Physiol. Rep. 2016;4(6):e12708. doi: 10.14814/phy2.12708
27. Mercer J.G., Archer Z.A. Putting the diet back into diet-induced obesity: diet-induced hypothalamic gene expression. Eur. J. Pharmacol. 2008;585(1):31–37. doi: 10.1016/j.ejphar.2007.11.077
28. Shishkina V.V., Antakova L.N., Zolotareva S.N., Atyakshin D.A. Matrix metalloproteinases in extracellular matrix remodeling: molecular, cellular and tissue aspects. Zhurnal anatomii i gistopatologii = Journal of Anatomy and Histopathology. 2022; 11(3) 93–108. [In Russian]. doi: 10.18499/2225-7357-2022-11-3-93-108
29. Yagoda A.V., Koroy P.V., Dudov T.R. Matrix metalloproteinases and morphological features in chronic liver diseases. Eksperimental’naya i klinicheskaya gastroenterologiya = Experimental and Clinical Gastroenterology. 2023;218(10):153–159. [In Russian]. doi: 10.31146/1682-8658-ecg-218-10-153-159
30. Chernysheva M.B., Makarova M.A., Tsvetkov I.S. Morphological changes of the internal organs of rats after long-term excessive consumption of carbohydrates and fats. Morfologicheskiye vedomosti = Morphological Newsletter. 2014;(3):74–78. [In Russian]. doi: 10.20340/mv-mn.2014.0(3):74-78
31. Yabluchanskiy A., Ma Y., Iyer R.P., Hall M.E., Lindsey M.L. Matrix metalloproteinase-9: many shades of function in cardiovascular disease. Physiology (Bethesda). 2013;28(6):391–403. doi: 10.1152/physiol.00029.2013