The importance of angiogenesis and lymphangiogenesis in gastric cancer
https://doi.org/10.18699/SSMJ20250304
Abstract
A literature search was made in the PubMed database to study articles devoted to the results of studies of the features of blood and lymphatic vascularization of gastric cancer (GC). Hemangiogenesis and lymphangiogenesis in any tumor, including GC, are absolutely necessary for growth, invasion and metastatic spread. Tumor angiogenesis is activated via hypoxia of cells, accordingly, the content of factors both induced by hypoxia and associated with vascular growth increases in the GC tissues. In addition, some leukocytes infiltrating the tumor take an active part in angiogenesis, also contributing to the development and progression of GC. Vessel growth is triggered not only in the tumor, but also in other parts of the stomach. Inhibitors of angiogenesis and lymphatic vessel growth contribute to slowing down tumor growth and suppress metastasis. Unfortunately, the state of the vascular network of adjacent organs remains unexplored, while proangiogenic factors spread through existing blood and lymphatic vessels and should affect angiogenesis, at least, in liver and regional lymph nodes.
Keywords
About the Authors
I. V. MaiborodinRussian Federation
Igor V. Maiborodin, doctor of medical sciences, professor
630090; Academician Lavrentiev ave., 8; Novosibirsk
T. G. Ivleva
Russian Federation
Tatyana G. Ivleva
630090; Academician Lavrentiev ave., 8; Novosibirsk
B. V. Sheplev
Russian Federation
Boris V. Sheplev, doctor of medical sciences
630090; Academician Lavrentiev ave., 8; Nikolaeva st., 12/3; Novosibirsk
A. I. Shevela
Russian Federation
Andrei I. Shevela, doctor of medical sciences, professor
630090; Academician Lavrentiev ave., 8; Novosibirsk
References
1. Bray F., Laversanne M., Sung H., Ferlay J., Siegel R.L., Soerjomataram I., Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024;74(3):229–263. doi: 10.3322/caac.21834
2. Malignant neoplasms in Russia in 2023 (incidence and mortality). Eds. A.D. Kaprin, V.V. Starinsky, A.O. Shakhzadova. Moscow: P.A. Herzen Moscow Oncology Research Institute, 2024. 276 p. [In Russian].
3. van Cutsem E., Sagaert X., Topal B., Haustermans K., Prenen H. Gastric cancer. Lancet. 2016;388(10060):2654–2664. doi: 10.1016/S0140-6736(16)30354-3
4. Lott P.C., Carvajal-Carmona L.G. Resolving gastric cancer aetiology: an update in genetic predisposition. Lancet Gastroenterol. Hepatol. 2018;3(12):874–883. doi: 10.1016/S2468-1253(18)30237-1
5. Russo A.E., Strong V.E. Gastric cancer etiology and management in Asia and the West. Annu. Rev. Med. 2019;70:353–367. doi: 10.1146/annurev-med-081117-043436
6. Shi D.B., Ma R.R., Zhang H., Hou F., Guo X.Y., Gao P. GAGE7B promotes tumor metastasis and growth via activating the p38δ/pMAPKAPK2/pHSP27 pathway in gastric cancer. J. Exp. Clin. Cancer Res. 2019;38(1):124. doi: 10.1186/s13046-019-1125-z
7. Xue L., Chu W., Wan F., Wu P., Zhao X., Ma L., She Y., Li C., Li Y. YKL-39 is an independent prognostic factor in gastric adenocarcinoma and is associated with tumor-associated macrophage infiltration and angiogenesis. World J. Surg. Oncol. 2022;20(1):362. doi: 10.1186/s12957-022-02830-9
8. Qiu Y., Lu G., Li N., Hu Y., Tan H., Jiang C. Exosome-mediated communication between gastric cancer cells and macrophages: implications for tumor microenvironment. Front. Immunol. 2024;15:1327281. doi: 10.3389/fimmu.2024.1327281
9. Maiborodin I.V., Goncharov M.A., Shevela A.I., Krasilnikov S.E., Shumeikina AO., Maiborodina V.I. Angiogenesis in endometrial cancer: clinical and biological significance. Sibirskiy onkologicheskiy zhurnal = Siberian Journal of Oncology. 2024;23(4):172–185. [In Russian]. doi: 10.21294/1814-4861-2024-23-4-172-185
10. Macedo F., Ladeira K., Longatto-Filho A., Martins S.F. Gastric cancer and angiogenesis: is VEGF a useful biomarker to assess progression and remission? J. Gastric Cancer. 2017;17(1):1–10. doi: 10.5230/jgc.2017.17.e1
11. Li N., Wang H.X., Qin C., Wang X.H., Han F.Y. Relationship between clinicopathological features and HIF-2α in gastric adenocarcinoma. Genet. Mol. Res. 2015;14(1):1404–1413. doi: 10.4238/2015.February.13.19
12. Ozmen M.M., Ozmen F., Zulfikaroglu B. Lymph nodes in gastric cancer. J. Surg. Oncol. 2008;98(6):476–481. doi: 10.1002/jso.21134
13. Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008; 454(7203):436–444. doi: 10.1038/nature07205
14. Hanahan D., Coussens L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–322. doi: 10.1016/j.ccr.2012.02.022
15. Galdiero M.R., Garlanda C., Jaillon S., Marone G., Mantovani A. Tumor associated macrophages and neutrophils in tumor progression. J. Cell. Physiol. 2013;228(7):1404–1412. doi: 10.1002/jcp.24260
16. Varricchi G., Galdiero M.R., Marone G., Granata F., Borriello F., Marone G. Controversial role of mast cells in skin cancers. Exp. Dermatol. 2017;26(1):11–17. doi: 10.1111/exd.13107
17. Zhang L.X., Wei Z.J., Xu A.M., Zang J.H. Can the neutrophil-lymphocyte ratio and platelet-lymphocyte ratio be beneficial in predicting lymph node metastasis and promising prognostic markers of gastric cancer patients? Tumor maker retrospective study. Int. J. Surg. 2018;56:320–327. doi: 10.1016/j.ijsu.2018.06.037
18. Stadnikov A.A., Sen’chukova M.A., Shevliuk N.N., Bokov D.A. Morphological characteristic of gastric submucosal vessels in the peritumoral areas. Morfologiya = Morphology. 2011;140(4):18–22. [In Russian].
19. Hafez N.H., Tahoun N.S. Expression of cyclooxygenase 2 and vascular endothelial growth factor in gastric carcinoma: Relationship with clinico-pathological parameters. J. Egypt. Natl. Canc. Inst. 2016;28(3):149–156. doi: 10.1016/j.jnci.2016.05.005
20. Ikeda K., Oki E., Saeki H., Ando K., Morita M., Oda Y., Imamura M., Kakeji Y., Maehara Y. Intratumoral lymphangiogenesis and prognostic significance of VEGFC expression in gastric cancer. Anticancer Res. 2014;34(8):3911–3915.
21. Li F., Meng G., Tan B., Chen Z., Ji Q., Wang X., Liu C., Niu S., Li Y., Liu Y. Relationship between HER2 expression and tumor interstitial angiogenesis in primary gastric cancer and its effect on prognosis. Pathol. Res. Pract. 2021;217:153280. doi: 10.1016/j.prp.2020.153280
22. Fan Z., Li Y., Zhao Q., Fan L., Tan B., Zuo J., Hua K., Ji Q. Highly expressed granulocyte colony-stimulating factor (G-CSF) and granulocyte colony-stimulating factor receptor (G-CSFR) in human gastric cancer leads to poor survival. Med. Sci. Monit. 2018;24:1701–1711. doi: 10.12659/msm.909128
23. Gao L.M., Wang F., Zheng Y., Fu Z.Z., Zheng L., Chen L.L. Roles of fibroblast activation protein and hepatocyte growth factor expressions in angiogenesis and metastasis of gastric cancer. Pathol. Oncol. Res. 2019;25(1):369–376. doi: 10.1007/s12253-017-0359-3
24. Yan Z., Yan Q., Song Y., Wang L. TMSB10, a potential prognosis prediction biomarker, promotes the invasion and angiogenesis of gastric cancer. J. Gastroenterol. Hepatol. 2021;36(11):3102–3112. doi: 10.1111/jgh.15576
25. Cao H., Li Y., Huang L., Bai B., Xu Z. Clinicopathological significance of neuropilin 1 expression in gastric cancer: a meta-analysis. Dis. Markers. 2020;2020:4763492. doi: 10.1155/2020/4763492
26. Tao X., Cheng L., Li Y., Ci H., Xu J., Wu S., Tao Y. Expression of CRYAB with the angiogenesis and poor prognosis for human gastric cancer. Medicine (Baltimore). 2019;98(45):e17799. doi: 10.1097/MD.0000000000017799
27. Liu W., Zhang Q., Zhang Y., Sun L., Xiao H., Luo B. Epstein–Barr virus regulates endothelin-1 expression through the ERK/FOXO1 pathway in EBV-associated gastric cancer. Microbiol. Spectr. 2023;11(1):e0089822. doi: 10.1128/spectrum.00898-22
28. Pak K.H., Park K.C., Cheong J.H. VEGF-C induced by TGF- β1 signaling in gastric cancer enhances tumor-induced lymphangiogenesis. BMC Cancer. 2019;19(1):799. doi: 10.1186/s12885-019-5972-y
29. Xia Y.J., Jiang X.T., Jiang S.B., He X.J., Luo J.G., Liu Z.C., Wang L., Tao H.Q., Chen J.Z. PHD3 affects gastric cancer progression by negatively regulating HIF1A. Mol. Med. Rep. 2017;16(5):6882–6889. doi: 10.3892/mmr.2017.7455
30. Ma C., Luo C., Yin H., Zhang Y., Xiong W., Zhang T., Gao T., Wang X., Che D., Fang Z., … Yang X. Kallistatin inhibits lymphangiogenesis and lymphatic metastasis of gastric cancer by downregulating VEGF-C expression and secretion. Gastric Cancer. 2018;21(4):617–631. doi: 10.1007/s10120-017-0787-5
31. Park J.Y., Sung J.Y., Lee J., Park Y.K., Kim Y.W., Kim G.Y., Won K.Y., Lim S.J. Polarized CD163+ tumor-associated macrophages are associated with increased angiogenesis and CXCL12 expression in gastric cancer. Clin. Res. Hepatol. Gastroenterol. 2016;40(3):357–365. doi: 10.1016/j.clinre.2015.09.005
32. Wu H., Xu J.B., He Y.L., Peng J.J., Zhang X.H., Chen C.Q., Li W., Cai S.R. Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer. J. Surg. Oncol. 2012;106(4):462–468. doi: 10.1002/jso.23110
33. Hiramatsu S., Tanaka H., Nishimura J., Sakimura C., Tamura T., Toyokawa T., Muguruma K., Yashiro M., Hirakawa K., Ohira M. Neutrophils in primary gastric tumors are correlated with neutrophil infiltration in tumor-draining lymph nodes and the systemic inflammatory response. BMC Immunol. 2018;19(1):13. doi: 10.1186/s12865-018-0251-2
34. Ammendola M., Sacco R., Donato G., Zuccalà V., Russo E., Luposella M., Vescio G., Rizzuto A., Patruno R., de Sarro G., … Ranieri G. Mast cell positivity to tryptase correlates with metastatic lymph nodes in gastrointestinal cancer patients treated surgically. Oncology. 2013;85(2):111–116. doi: 10.1159/000351145
35. Ammendola M., Sacco R., Zuccalà V., Luposella M., Patruno R., Gadaleta P., Zizzo N., Gadaleta C.D., de Sarro G., Sammarco G., Oltean M., Ranieri G. Mast cells density positive to tryptase correlate with microvascular density in both primary gastric cancer tissue and loco-regional lymph node metastases from patients that have undergone radical surgery. Int. J. Mol. Sci. 2016;17(11):1905. doi: 10.3390/ijms17111905
36. Lotfi-Emran S., Ward B.R., Le Q.T., Pozez A.L., Manjili M.H., Woodfolk J.A., Schwartz L.B. Human mast cells present antigen to autologous CD4+ T cells. J. Allergy Clin. Immunol. 2018;141(1):311–321.e10. doi: 10.1016/j.jaci.2017.02.048
37. Kritikou E., van der Heijden T., Swart M., van Duijn J., Slütter B., Wezel A., Smeets H.J., Maffia P., Kuiper J., Bot I. Hypercholesterolemia induces a mast Cell-CD4+ T cell interaction in atherosclerosis. J. Immunol. 2019;202(5):1531–1539. doi: 10.4049/jimmunol.1800648
38. Dawson M.A., Kouzarides T., Huntly B.J. Targeting epigenetic readers in cancer. N. Engl. J. Med. 2012;367(7):647–657. doi: 10.1056/NEJMra1112635
39. Yao J., Da M., Guo T., Duan Y., Zhang Y. RNAi-mediated gene silencing of vascular endothelial growth factor-C inhibits tumor lymphangiogenesis and growth of gastric cancer in vivo in mice. Tumour Biol. 2013;34(3):1493–1501. doi: 10.1007/s13277-013-0674-6
40. Liu P., Ding P., Yang J., Wu H., Wu J., Guo H., Yang P., Tian Y., Meng L., Zhao Q. MicroRNA-431-5p inhibits angiogenesis, lymphangiogenesis, and lymph node metastasis by affecting TGF-β1/SMAD2/3 signaling via ZEB1 in gastric cancer. Mol. Carcinog. 2024;63(7):1378–1391. doi: 10.1002/mc.23731
41. Liu H.T., Ma R.R., Lv B.B., Zhang H., Shi D.B., Guo X.Y., Zhang G.H., Gao P. LncRNA-HNF1A-AS1 functions as a competing endogenous RNA to activate PI3K/AKT signalling pathway by sponging miR-30b-3p in gastric cancer. Br. J. Cancer. 2020;122(12):1825–1836. doi: 10.1038/s41416-020-0836-4
42. Sammarco G., Varricchi G., Ferraro V., Ammendola M., de Fazio M., Altomare D.F., Luposella M., Maltese L., Currò G., Marone G., Ranieri G., Memeo R. Mast cells, angiogenesis and lymphangiogenesis in human gastric cancer. Int. J. Mol. Sci. 2019;20(9):2106. doi: 10.3390/ijms20092106
43. Tapia O., Riquelme I., Leal P., Sandoval A., Aedo S., Weber H., Letelier P., Bellolio E., Villaseca M., Garcia P., Roa J.C. The PI3K/AKT/mTOR pathway is activated in gastric cancer with potential prognostic and predictive significance. Virchows Arch. 2014;465(1):25–33. doi: 10.1007/s00428-014-1588-4
44. Xing X., Zhang L., Wen X., Wang X., Cheng X., Du H., Hu Y., Li L., Dong B., Li Z., Ji J. PP242 suppresses cell proliferation, metastasis, and angiogenesis of gastric cancer through inhibition of the PI3K/AKT/mTOR pathway. Anticancer Drugs. 2014;25(10):1129–1140. doi: 10.1097/CAD.0000000000000148
45. Ma J., Yao S., Li X.S., Kang H.R., Yao F.F., Du N. Neoadjuvant therapy of DOF regimen plus bevacizumab can increase surgical resection ratein locally advanced gastric cancer: a randomized, controlled study. Medicine (Baltimore). 2015;94(42):e1489. doi: 10.1097/MD.0000000000001489
46. Takeuchi T., Yuasa Y., Okitsu H., Maki H., Tsuneki T., Matsuo Y., Edagawa H., Mori O., Miyamoto N., Eto S. … Ishikura H. Effectiveness of ramucirumab therapy for advanced gastric cancer after stent placement for esophagogastric junction carcinoma obstruction-a case report. Gan To Kagaku Ryoho. 2019;46(6):1057–1059.
47. Mori K., Aoyama T., Morita J., Maezawa Y., Amano S., Sawazaki S., Numata M., Tamagawa H., Sato T., Oshima T., … Rino Y. Gastrectomy for bleeding gastric cancer during ramucirumab plus paclitaxel therapy – a case report. Gan To Kagaku Ryoho. 2019;46(3):586–588.
48. Kurihara M., Sawazaki S., Kawabe T., Minowa K., Akimoto N., Tsuchiya K., Kato A., Higuchi A., Rino Y., Matsukawa H., Saeki H. A case of perforation of the diverticulum of the appendix during chemotherapy with ramucirumab plus nab-paclitaxel for gastric cancer. Gan To Kagaku Ryoho. 2021;48(10):1293–1295.
49. Wang J., Dong X., Li D., Fang Z., Wan X, Liu J. Fucoxanthin inhibits gastric cancer lymphangiogenesis and metastasis by regulating Ran expression. Phytomedicine. 2023;118:154926. doi: 10.1016/j.phymed.2023.154926