Перспективы применения флавоноидов при остеопорозе
https://doi.org/10.18699/SSMJ20250303
Аннотация
Обзор посвящен целесообразности применения флавоноидов в комплексной терапии остеопороза. Многочисленные виды фармакологической активности, присущие этим полифенольным соединениям растительного происхождения, в том числе противовоспалительная, антиоксидантная, антипролиферативная, иммуномодулирующая, противоопухолевая, антикоагулянтная и другие, заставили с вниманием подойти к возможности их клинической эффективности при костной патологии. Экспериментальные исследования последних лет позволили установить, что протективное действие флавоноидов, препятствующее патологической потере кости, обусловлено, прежде всего, активацией формирования новой костной ткани путем стимуляции пролиферации и дифференцировки остеобластов, а также ослаблением процесса резорбции кости за счет угнетения остеокластогенеза. Обсуждаются возможные механизмы отмеченных эффектов с учетом воздействия на процессы внутриклеточного сигнализирования. Отмечается положительное влияние на процесс остеогенеза эстрогеноподобных свойств ряда флавоноидов. В обзоре рассмотрены многообещающие свойства наиболее широко встречающихся флавонолов, флавонов, флаванонов, флаван-3-одов (катехинов), антоцианидинов, изофлавонов, позволяющие с оптимизмом смотреть на их клиническое применение в будущем. Как полагают многие авторы, дальнейшие углубленные доклинические исследования должны ответить на многие сохраняющиеся вопросы, касающиеся механизмов действия флавоноидов, а также решить проблему их биодоступности.
Об авторах
Я. Ф. ЗверевРоссия
Яков Федорович Зверев, д. м. н., проф.
656038; пр. Ленина, 40; Барнаул
А. Я. Рыкунова
Россия
Анна Яковлевна Рыкунова, к. м. н.
656038; пр. Ленина, 40; Барнаул
Список литературы
1. Нуруллина Г.М., Ахмадуллина Г.И. Костное ремоделирование в норме и при первичном остеопорозе: значение маркеров костного ремоделирования. Арх. внутр. мед. 2018;8(2):100–110. doi: 10.20514/2226-6704-2018-8-2-100-110
2. Игнатенко Г.А., Немсадзе И.Г., Мирович Е.Д., Чурилов А.В., Майлян Э.А., Глазков И.С., Румянцева З.С. Роль цитокинов в ремоделировании костной ткани и патогенез постменопаузального остеопороза. Мед. вестн. Юга России. 2020;11(2):6–18. doi: 10.21886/2219-8075-2020-11-2-6-18
3. Ялаев Б.И., Хусаинова P.И. Эпигенетическая регуляция ремоделирования костной ткани и ее роль в патогенезе первичного остеопороза. Вавил. ж. генетики и селекции. 2023;27(4):401–410. doi: 10.18699/VJGB-23-48
4. Kim J.M., Lin C., Stavre Z., Greenblatt M.B., Shim J.H. Osteoblast-osteoclast communications and bone homeostasis. Cells. 2020;9(19):2073. doi: 10.3390/cells9092073
5. Yang R., Li J., Zhang J., Xue Q., Qin R., Wang R., Goltzman D., Miao D. 17β-estradiol plays the anti-osteoporosis role via a novel ESR1-Keap1-Nrf2 axismediated stress response activation and Tmem119 up-regulation. Free Radic. Biol. Med. 2023;195:231–244. doi: 10.1016/j.freeradbiomed.2022.12.102
6. Li Q., Tian C., Liu X., Li D., Liu H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front. Pharmacol. 2023;14:1203767. doi: 10.3389/fphar.2023.1203767
7. Gu Z., Zhou G., Zhang X., Liang G., Xiao X., Dou Y. Research progress of plant medicine and Chinese herbal compounds in the treatment of rheumatoid arthritis combined with osteoporosis. Front. Med. (Lausanne). 2024;10:1288591. doi: 10.3389/fmed.2023.1288591
8. Zhou C., Shen S., Zhang M., Luo H., Zhang Y., Wu C., Zeng L., Ruan H. Mechanisms of action and synergetic formulas of plant-based natural compounds from traditional Chinese Medicine for managing osteoporosis: a literature review. Front. Med. (Lausanne). 2023;10:1235081. doi: 10.3389/fmed.2023.1235081
9. Cao G., Hu S.Q., Ning Y., Dou X., Ding C., Wang L., Wang Z., Sang X., Yang Q., Shi J., Hao M., Han X. Traditional Chinese medicine in osteoporosis: from pathogenesis to potential activity. Front. Pharmacol. 2024;15:1370900. doi: 10.3389/fphar.2024.1370900
10. Зверев Я.Ф., Рыкунова А.Я. Фармакология флавоноидов. Барнаул, 2023. 178 c. – Zverev Ya.F., Rykunova A.Ya. Pharmacology of flavonoids. Barnaul, 2023. 178 p. [In Russian].
11. Ramesh P., Jagadeesan R., Sekaran S., Dhanasekaran A., Vimalraj S. Flavonoids: classification, function, and molecular mechanisms involved in bone remodeling. Front. Endocrinol. (Lausanne). 2021;12:779638. doi: 10.3389/fendo.2021.779638
12. Bellavia D., Dimarco E., Costa V., Carina V., de Luca A., Raimondi L., Fini M., Gentile C., Caradonna F., Giavaresi G. Flavonoids in bone erosive diseases: perspectives in osteoporosis treatments. Trends Endocrinol. Metab. 2021;32(2):76–94. doi: 10.1016/j.tem.2020.11.007
13. Sharma A.R., Lee Y.H., Bat-Ulzii A., Chatterjee S., Bhattacharya M., Chakraborty C., Lee S.S. Bioactivity, molecular mechanism, and targeted delivery of flavonoids for bone loss. Nutrients. 2023;15(4):919. doi: 10.3390/nu15040919
14. Guan F., Wang Q., Bao T., Chao Y. Anti-rheumatic effect of quercetin and recent developments in nano formulation. RSC Adv. 2021;11(13):7280–7293. doi: 10.1039/d0ra08817j
15. Tang M., Zeng Y., Peng W., Xie X., Yang Y., Ji B., Li F. Pharmacological aspects of natural quercetin in rheumatoid arthritis. Drug Des. Devel. Ther. 2022;16:2043–2053. doi: 10.2147/DDDT.S364759
16. Loukas A.T., Papadourakis M., Panagiotopoulos V., Zarmpala A., Chontzopoulou E., Christodoulou S., Katsila T., Zoumpoulakis P., Matsoukas M.T. Natural compounds for bone remodeling: a computational and experimental approach targeting bone metabolism-related proteins. Int. J. Mol. Sci. 2024;25(9):5047. doi: 10.3390/ijms25095047
17. Wei Q., Ouyang M., GuoX., Fu X., Liu T., Luo Y., Tang H., Yang Y., Gao X., Mao H. Effect of hyperoside on osteoporosis in ovariectomized mice through estrogen receptor α/ITGβ3 signaling pathway. Eur. J. Pharmacol. 2024;977:176666. doi: 10.1016/j.ejphar.2024.176666
18. Pang X.G., Cong Y., Bao N.R., Li Y.G., Zhao J.N. Quercetin stimulates bone marrow mesenchymal stem cell differentiation through an estrogen receptor-mediated pathway. Bio. Med. Res. Int. 2018;2018:4178021. doi: 10.1155/2018/4178021
19. Zhao J., Wu J., Xu B., Yuan Z., Leng Y., Min J., Lan X., Luo J. Kaempferol promotes bone formation in part via the mTOR signaling pathway. Mol. Med. Rep. 2019;20(6):5197–5207. doi: 10.3892/mmr.2019.10747
20. Liu H., Yi X., Tu S., Cheng C., Luo J. Kaempferol promotes BMSC osteogenic differentiation and improves osteoporosis by downregulation miR-10a-3p and upregulating CXCL12. Mol. Cell. Endocrinol. 2021;520:111074. doi: 10.1016/j.mce.2020.111074
21. Nowak B., Matuszewska A., Nikodem A., Filipiak J., Landwójtowicz M., Sadanowicz E., Jędrzejuk D., Rzeszutko M., Zduniak K., Piasecki T., … Szelag A. Oral administration of kaempferol inhibits bone loss in rat model of ovariectomy-induced osteopenia. Pharmacol. Rep. 2017;69(5):1113–1119. doi: 10.1016/j.pharep.2017.05.002
22. Lee C.J., Moon S.J., Jeong J.H., Lee S., Lee M.H., Yoo S.M., Lee H.S., Kang H.C., Lee J.Y., Lee W.S., … Cho Y.Y. Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis. Cell. Death Dis. 2018;9(3):401. doi: 10.1038/s41419-018-0433-0
23. Zhang Z., Xu W., Zhang Z., Chen X., Jin H., Jiang N., Xu H. The bone-protective benefits of kaempferol combined with metformin by regulation of osteogenesis-angiogenesis coupling in OVX rats. Biomed. Pharmacother. 2024;173:116364. doi: 10.1016/j.biopha.2024.116364
24. Kelepouri D., Mavropoulos A., Bogdanos D.P., Sakkas L.I. The role of flavonoids in inhibitory Th17 responses in inflammatory arthritis. J. Immunol. Res. 2018;2018:9324357. doi: 10.1155/2018/9324357
25. Huang Z., Cheng C., Cao B., Wang J., Wei H., Liu X., Han Y., Yang S., Wang X. Icariin protects against glucocorticoid-induced osteonecrosis of the femoral head of rats. Cell. Physiol. Biochem. 2018;47(2):694–706. doi: 10.1159/000490023
26. Xu H., Zhou S., Qu R., Yang Y., Gong Y., Hong Y., Jin A., Huang X., Dai Q., Jiang L. Icariin prevents oestrogen deficiency-induced alveolar bone loss through promoting osteogenesis via STAT3. Cell. Prolif. 2020;53(2):e12743. doi: 10.1111/cpr.12743
27. Xu Q., Chen G., Liu X., Dai M., Zhang B. Icariin inhibits RANKL-induced osteoclastogenesis via modulation of the NF-kappa B and MAPK signaling pathways. Biochem. Biophys. Res. Commun. 2019;508(3):902–906. doi: 10.1016/j.bbrc.2018.11.201
28. Chi L., Gao W., Shu X., Lu X. A natural flavonoid glucoside, icariin, regulates Th17 and alleviates rheumatoid arthritis in a murine model. Mediators Inflamm. 2014;2014:392062. doi: 10.1155/2014/392062
29. Sun P., Liu Y., Deng X., Yu C., Dai N., Yuan X., Chen L., Yu S., Si W., Wang X., … Pang H. An inhibitor of cathepsin K, icariin suppresses cartilage and bone degradation in mice of collagen-induced arthritis. Phytomedicine. 2013;20(11):975–979. doi: 10.1016/j.phymed.2013.04.019
30. Xue L., Jiang Y., Han T., Zhang N., Qin L., Xin H., Zhang Q. Comparative proteomic and metabolomic analysis reveal the antiosteoporotic molecular mechanism of icariin from Epimedium brevicornu maxim. J. Ethnopharmacol. 2016;192:370–381. doi: 10.1016/j.jep.2016.07.037
31. Hughes S.D., Ketheesan N., Haleagrahara N. The therapeutic potential of plant flavonoids on rheumatoid arthritis. Crit. Rev. Food Sci. Nutr. 2017;57(17):3601–3613. doi: 10.1080/10408398.2016.1246413
32. Zhang X., Zhou C., Zha X., Xu Z., Li L., Liu Y., Xu L., Cui L., Xu D., Zhu B. Apigenin promotes osteogenic differentiation of human mesenchymal stem cells through JNK and P38 MAPK pathways. Mol. Cell. Biochem. 2015;407(1-2):41–50. doi: 10.1007/s11010-015-2452-9
33. Lorusso F., Scarano A., Fulle S., Valbonetti L., Mancinelli R., di Filippo E.S. Effectiveness of apigenin, resveratrol, and curcumin as adjuvant nutraceuticals for calvarial bone defect healing: an in vitro and histological study on rats. Nutrients. 2023;15(5):1235. doi: 10.3390/nu15051235
34. Ali D., Okla M., Abuelreich S., Vishnabalaji R., Ditzel N., Hamam R., Kowal J.M., Sayed A., Aldahmash A., Alajez N.M., Kassem M. Apigenin and rutaecarpine reduce the burden of cellular senescence in bone morrow stromal stem cells. Front. Endocrinol. (Lausanne). 2024;15:1360054. doi: 10.3389/fendo.2024.1360054
35. d’Amico E., Pierfelice T.V., Iezzi G., di Pietro N., Lepore S., Lorusso F., Scarano A., Pandolfi A., Piattelli A., Petrini M. Apigenin promotes proliferation and mineralization human osteoblasts and up-regulates osteogenic markers. Appl. Sci. 2022;12:8510. doi: 10.3390/app12178510
36. Asadi A., Goudarzi F., Ghanadian M., Mohammadalipour A. Evaluation of the osteogenic effect of apigenin on human mesenchymal stem cells by inhibiting inflammation through modulation of NF-κB/IκBα. Res. Pharm. Sci. 2022;17(6):697–706. doi: 10.4103/1735-5362.359436
37. Jung W.W. Protective effect of apigenin against oxidative stress-induced damage in osteoblastic cells. Int. J. Mol. Med. 2014;33(5):1327–1334. doi: 10.3892/ijmm.2014.1666
38. Bandyopadhyay S., Lion J.M., Mentaverri R., Ricupero D.A., Kamel S., Romero J., Chattopadhyay N. Attenuation of osteoclastogenesis and osteoclast function by apigenin. Biochem. Pharmacol. 2006;72(2):184–197. doi: 10.1016/j.bcp.2006.04.018
39. Li Y., Yang B., Bai Y.U., Xia S., Mao M., Li X., Li N., Chen L. The roles of synovial hyperplasia, angiogenesis and osteoclastogenesis in the protective effect of apigenin in collagen-induced arthritis. Int. Immunopharmacol. 2019;73:362–369. doi: 10.1016/j.intimp.2019.05.024
40. Goto T., Hagiwara K., Shirai N., Yoshida K., Hagiwara H. Apigenin inhibits osteoblastogenesis and osteoclastogenesis and prevents bone loss in ovariectomized mice. Cytotechnology. 2015;67(2):357–362. doi: 10.1007/s10616-014-9694-3
41. Choi E.M. Luteolin protects osteoblastic MC3T3-E1 cells from antimycin A-induced cytototoxicity through the improved mitochondrial function and activation of PI3K/Akt/CREB. Toxicol. In Vitro. 2011;25(8):1671–1679. doi: 10.1016/j.tiv.2011.07.004
42. Zheng L. Luteolin stimulates proliferation and inhibits late differentiation of primary rat calvarial osteoblast induced by high-dose dexamethasone via Sema3A/NRP1/Plexin A1. Curr. Pharm. Biotechnol. 2021;22(11):1538–1545. doi: 10.2174/1389201021666201216150442
43. Jing Z., Wang C., Yang Q., Wei X., Jin Y., Meng Q., Liu Q., Liu Z., Ma X., Liu K., Sun H., Liu M. Luteolin attenuates glucocorticoid-induced osteoporosis by regulating ERK/Lrp-5/GSK-3β signaling pathway in vivo and in vitro. J. Cell. Physiol. 2019;234(4):4472–4490. doi: 10.1002/jcp.27252
44. Lee J.W., Ahn J.Y., Hasegawa S.I., Cha B.Y., Yonezawa T., Nagai K., Seo H.J., Jeon W.B., Wao J.T. Inhibitory effect of luteolin on osteoclast differentiation and function. Cytotechnology. 2009;61(3):125–134. doi: 10.1007/s10616-010-9253-5
45. Chai S., Yang Y., Wei L., Cao Y., Ma J., Zheng X., Teng J., Qin N. Luteolin rescues postmenopausal osteoporosis elicited by OVX through alleviating osteoblast pyroptosis via activating PI3K-AKT signaling. Phytomedicine. 2024;128:155516. doi: 10.1016/j.phymed.2024.155516
46. Song F., Wei C., Zhou L., Qin A., Yang M., Tickner J., Huang Y., Zhao J., Xu J. Luteoloside prevents lipopolysaccharide-induced osteolysis and suppresses RANKL-induced osteoclastogenesis through attenuating RANKL signaling cascades. J. Cell. Physiol. 2018;233(2):1723–1735. doi: 10.1002/jcp.26084
47. Kim J.M., Lee S.U., Kim Y.S., Min Y.K., Kim S.H. Baicalein stimulates osteoblast differentiation via coordinating activation MAP kinases and transcription factors. J. Cell. Biochem. 2008;104(5):1906–1917. doi: 10.1002/jcb.21760
48. Li S., Tang J., Chen J., Zhang P., Wang T., Chen T., Yan B., Huang B., Wang L., Huang M., Zhang Z., Jin D. Regulation of bone formation by baicalein via the mTORC1 pathway. Drug Des. Des. Devel. Ther. 2015;9:5169–5183. doi: 10.2147/DDDT.S81578
49. Wang Q., Shi D., Geng Y., Huang Q., Xiang L. Baicalin augments the differentiation of osteoblasts via enhancement of microRNA-217. Mol. Cell. Biochem. 2020;463(1-2):91–100. doi: 10.1007/s11010-019-03632-6
50. Kim M.H., Ryu S.Y., Bae M.A., Choi J.S., Min Y.K., Kim S.H. Baicalein inhibits osteoclast differentiation and induces mature osteoclast apoptosis. Food Chem. Toxicol. 2008;46(11):3375–3382. doi: 10.1016/j.fct.2008.08.016
51. Cai P., Lu Y., Yin Z., Wang X., Zhou X., Li Z. Baicalein ameliorates osteoporosis via AKT/FOXO1 signaling. Aging (Albany NY). 2021;13(13):17370–17379. doi: 10.18632/aging.203227
52. Saul D., Weber M., Zimmermann M.H., Kosinsky R.L., Hoffman D.B., Menger B., Taudien S., Lehmann W., Komrakova M., Sehmisch S. Effect of the lioxygenase inhibitor baicalein on bone tissue and bone healing in ovariectomized rats. Nutr. Metab. (Lond). 2019;16:4. doi: 10.1186/s12986-018-0327-2
53. Li Y., Wang X. Chrysin attenuates high glucose-induced BMSc dysfunction via the activation of the PI3K/AKT/Nrf2 signaling pathway. Drug Des. Devel. Ther. 2022;16:165–182. doi: 10.2147/DDDT.S335024
54. Oršolić N., Nemrava J., Jeleč Ž., Kukolj M., Odeh D., Jakopović B., Jembrek M.J., Bagatin T., Fureš R., Bagatin D. Antioxidative and anti-inflammatory activities of chrysin and naringenin in a drug-induced bone loss model in rats. Int. J. Mol. Sci. 2022;23(5):2872. doi: 10.3390/ijms23052872
55. Wu Z., Li C., Chen Y., Liu Q., Li N., He X., Li W., Shen R., Li L., Wei C., … Xu F. Chrysin protects against titanium particle-induced osteolysis by attenuating osteoclast formation and function by inhibiting NF-κB and MAPK signaling. Front. Pharmacol. 2022;13:793087. doi: 10.3389/fphar.2022.793087
56. Ortiz A.C., Fideles S.O.M., Reis C.H.B., Bellini M.Z., Pereira E.S.B.M., Pilon J.P.G., de Marchi M.A., Detregiachi C.R.P., Flato U.A.P., de Moraes Triazzi B.F., … Buchaim R.L. Therapeutic effects of citrus flavonoids neohesperidin, hesperidin and its aglycone, hesperetin on bone health. Biomolecules. 2022;12(5):626. doi: 10.3390/biom12050626
57. Hong W., Zhang W. Hesperidin promotes differentiation of alveolar osteoblasts via Wnt/β-catenin signaling pathway. J. Recept. Signal. Transduct. Res. 2020;40(5):442–448. doi: 10.1080/10799893.2020.1752718
58. Miguez P.A., Tuin S.A., Robinson A.G., Belcher J., Longwattanapisan P., Perley K., de Paiva Gonçalves, Hanifi A., Pleshko N., Barton E.R. Hesperidin promotes osteogenesis and modulates collagen matrix organization and mineralization in vitro and in vivo. Int. J. Mol. Sci. 2021;22(6):3223. doi: 10.3390/ijms22063223
59. Liu L., Zheng J., Yang Y.Z., Ni L., Chen H., Yu D. Hesperetin alleviated glucocorticoid-induced inhibition of osteogenic differentiation of BMSCs through regulating the ERK signaling pathway. Med. Mol. Morphol. 2021;54(1):1–7. doi: 10.1007/s00795-020-00251-9
60. Hu H.Y., Zhang Z.Z., Jiang X.Y., Duan T.H., Feng W., Wang X.G. Hesperidin anti-osteoporosis by regulating estrogen signaling pathways. Molecules. 2023;28(19):6987. doi: 10.3390/molecules28196987
61. Zhang M., Chen D., Zeng N., Liu Z., Chen X., Xiao H., Xiao L., Liu Z., Dong Y., Zheng J. Hesperidin ameliorates dexamethasone-induced osteoporosis by inhibiting p53. Front. Cell. Dev. Biol. 2022;10:820922. doi: 10.3389/fcell.2022.820922
62. Uehara M. Prevention of osteoporosis by foods and dietary supplements. Hesperidin and bone metabolism. Clin. Calcium. 2006;16(10):1669–1676.
63. Shehata A.S., Amer M.G., Abd El-Haleem M.R., Karam R.A. The ability of hesperidin compared to that of insulin for preventing osteoporosis induced by type I diabetes in young male albino rats: a histological and biochemical study. Exp. Toxicol. Pathol. 2017;69(4):203–212. doi: 10.1016/j.etp.2017.01.008
64. Aihaiti Y., Cai Y.S., Tuerhong X., Yang Y.N., Ma Y., Zheng H.S., Xu K., Xu P. Therapeutic effects of naringin in rheumatoid asthritis: network pharmacology and experimental validation. Front. Pharmacol. 2021;12:672054. doi: 10.3389/fphar.2021.672054
65. Yu X., Zhang P., Tang K., Shen H., Chen H., Zhang Z., Zhao W., Shang Q., Zhu G., Tan R., … Zhou B. Network pharmacology integrated with molecular docking explores the mechanisms of naringin against osteoporotic fracture by regulating oxidative stress. Evid. Based Complement. Alternat. Med. 2021;2021:6421122. doi: 10.1155/2021/6421122
66. Nor Muhamad M.L., Ekeuku S.O., Wong S.K., Chin K.Y. A scoping review of the skeletal effects of naringenin. Nutrients. 2022;14(22):4851. doi: 10.3390/nu14224851
67. Gan J., Deng X., Le Y., Lai J., Liao A. The development of naringin for use against bone and cartilage disorders. Molecules. 2023;28(9):3716. doi: 10.3390/molecules28093716
68. Ang E.S.M., Yang X., Chen H., Liu Q., Zheng M.H., Xu J. Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-κB and ERK activation. FEBS Lett. 2011;585(17):2755–2762. doi: 10.1016/j.febslet.2011.07.046
69. Wang W., Li M., Luo M., Shen M., Xu C., Xu G., Chen Y., Xia L. Naringenin inhibits osteoclastogenesis through modulation of helper T cells-secreted IL-4. J. Cell. Biochem. 2018;119(2):2084–2093. doi: 10.1002/jcb.26370
70. Wang W., Wu C., Tian B., Liu X., Zhai Z., Qu X., Jiang C., Ouyang Z., Mao Y., Tang T., Qin A., Zhu Z. The inhibition of RANKL-induced osteoclastogenesis through the suppression of p38 signaling pathway by naringenin and attenuation of titanium-particle-induced osteolysis. Int. J. Mol. Sci. 2014;15(12):21913–21934. doi: 10.3390/ijms151221913
71. Oršolić N., Goluža E., Dikić D., Lisičić D., Sašilo K., Rođ E., Jeleć Ž., Lazarus M.V., Orct T. Role of flavonoids on oxidative stress and mineral contents in the retinoic acid-induced bone loss model of rat. Eur. J. Nutr. 2014;53(5):1217–1227. doi: 10.1007/s00394-013-0622-7
72. Bussmann A.J.C., Borghi S.M., Zaninelli T.H., Dos Santos T.S., Guazelli C.F.S., Fattori V., Domiciano T.P., Pinho-Ribeiro F.A., Ruiz-Miyazawa K.W., Casella A.M.B., … Verri W.A. The citrus flavanone naringenin attenuates zymosan-induced mouse joint inflammation: induction of Nrf2 expression in recruited CD45 hematopoietic cells. Inflammopharmacology. 2019;27(6):1229–1242. doi: 10.1007/s10787-018-00561-6
73. Jagetia G.C., Venkatesha V.A., Reddy T.K. Naringin, a citrus flavonone, protects against radiation-induced chromosome damage in mouse bone marrow. Mutagenesis. 2003;18(4):337–343. doi: 10.1093/mutage/geg001
74. Swarnkar G., Sharan K., Siddiqui J.A., Mishra J.S., Khan K., Gupta V., Rawat R., Maurya R., Dwivedi A.K., Sanyal S., Chattopadhyay N. A naturally occurring derivative exerts potent bone anabolic effects by mimicking oestrogen action on osteoblasts. Br. J. Pharmacol. 2012;165(5):1526–1542. doi: 10.1111/j.1476-5381.2011.01637.x
75. Xie X., Fu J., Gou W., Qin Y., Wang D., Huang Z., Wang L., Li X. Potential mechanism of tea for treating osteoporosis, osteoarthritis, and rheumatoid arthritis. Front. Med. (Lausanne). 2024;11:1289777. doi: 10.3389/fmed.2024.1289777
76. Kaida K., Honda Y., Hashimoto Y., Tanaka M., Baba S. Application of green tea catechin for inducing the osteogenic differentiation of human differentiated fat cells in vitro. Int. J. Mol. Sci. 2015;16(12):27988–28000. doi: 10.3390/ijms161226081
77. Sakai G., Otsuka T., Fujita K., Kainuma S., Kuroyanagi G., Kawabata T., Matsushima-Nishiwaki R., Kozawa O., Tokuda H. Amplification by (-)-epigallocatechin gallate of prostaglandin F2α-stimulated synthesis of osteoprotegerin in osteoblasts. Mol. Med. Rep. 2017;16(5):6376–6381. doi: 10.3892/mmr.2017.7354
78. Wong K.C., Cao S., Dong X., Law M.C., Chan T.H., Wong M.S. (-)-Epiafzelechin protects against ovariectomy-induced bone loss in adult mice and modulate osteoblastic and osteoclastic functions in vitro. Nutrients. 2017;9(5):530. doi: 10.3390/nu9050530
79. Morinobu A., Biao W., Tanaka S., Horiuchi M., Jun L., Tsuji G., Sakai Y., Kurosaka M., Kumagai S. (-)-Epigallocatechin-3-gallate suppresses osteoclast differentiation and ameliorates experimental arthritis in mice. Arthritis Rheum. 2008;58(7):2012–2018. doi: 10.1002/art.23594
80. Park K.H., Gu D.R., So H.S., Kim K.J., Lee S.H. Dual role of cyanide-3-glycoside on the differentiation of bone cells. J. Dent. Res. 2015;94(12):1676–1683. doi: 10.1177/0022034515604620
81. Saulite L., Jekabsons K., Klavins M., Muceniece R., Riekstina U. Effects of malvidin, cyaniding and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes. Phytomedicine. 2019;53:86–95. doi: 10.1016/j.phymed.2018.09.029
82. Moriwaki S., Suzuki K., Muramatsu M., Nomura A., Inoue F., Into T., Yoshiko Y., Niida S. Delphinidin, one of the major anthocyanidins, prevents bone loss through the inhibition of excessive osteoclastogenesis in osteoposis model mice. PLoS One. 2014;9(5):e97177. doi: 10.1371/journal.pone.0097177
83. Nagaoka M., Maeda T., Moriwaki S., Nomura A., Kato Y., Niida S., Kruger M.C., Suzuki K. Petunidin, a B-ring 5’-O-methylated derivative of delphinidin, stimulates osteoblastogenesis and reduces sRANKL-induced bone loss. Int. J. Mol. Sci. 2019;20(11):2795. doi: 10.3390/ijms20112795
84. Chen G.D., Liang S.J., Huang L., Yu H.R., Wu Y.L., Wei Q.Z., Zhang Z.Q. Association of dietary anthocyanidins intake with bone health in children: a cross-sectional study. Calif. Tissue Int. 2023;113(4):393–402. doi: 10.1007/s00223-023-01128-6
85. Филиппова О.В. Фитоэстрогены: перспективы применения. Эффектив. фармакотерапия. 2020;16(22):30–36. doi: 10.33978/2307-3586-2020-16-22-30-36
86. Mohapatra S., Kumar P.A., Aggarwal A., Iqubal A., Mirza M.A., Iqbal Z. Phytotherapeutic approach for conquering menopausal syndrome and osteoporosis. Phytother. Res. 2024;38(6):2728–2763. doi: 10.1002/ptr.8172
87. Liao M.H., Tai Y.T., Cherng Y.G., Liu S.H., Chang Y.A., Lin P.I., Chen R.M. Genistein induces oestrogen receptor-α gene expression in osteoblasts through the activation of mitogen-activated protein kinase/NF-κB/activator protein-1 and promotes cell mineralization. Br. J. Nutr. 2014;111(1):55–63. doi: 10.1017/S0007114513002043
88. Kim M., Lim J., Lee J.H., Lee K.M., Kim S., Park K.W., Nho C.W., Cho Y.C. Understanding the functional role of genistein in the bone differentiation in mouse osteoblastic cell line MC3T3-E1 by RNA-Seq analysis. Sci. Rep. 2018;8(1):1–12. doi: 10.1038/s41598-018-21601-9
89. Cepeda S.B., Sandoval M.J., Crescitelli M.C., Rauschemberger M.B., Massheimer V.Z. The isoflavone genistein enhances osteoblastogenesis: signaling pathways involved. J. Physiol. Biochem. 2020;76(1):99–110. doi: 10.1007/s13105-019-00722-3
90. Chakraborty D., Gupta K., Biswas S. A mechanistic insights of phytoestrogens used for rheumatoid arthritis : an evidence-based review. Biomed. Pharmacother. 2021;133:111039. doi: 10.1016/j.biopha.2020.111039
91. Filipović B., Sošić-JurjevićB., Ajdžanović V., Živanović J., Manojlović-Stojanovski M., Nestorović N., Ristić N., Trifunović S., Milošević V. The phytoestrogen genistein prevents trabecular bone loss and affects thyroid follicular cells in a male rat model of osteoporosis. J. Anat. 2018;233(2):204–212. doi: 10.1111/joa.12828
92. Karieb S., Fox S.W. Phytoestrogens directly inhibit TNF-α-induced bone resorption in RAW264.7 cells by suppressing c-fos-induced NFATc1 expression. J. Cell. Biochem. 2011;112(2):476–487. doi: 10.1002/jcb.22935
93. Park K., Ju W.C., Jeo J.H., Kim J.Y., Seo H.S., Uchida Y., Cho Y. Increased OPG/RANKL ratio in the conditioned medium of soybean-treated osteoblasts suppresses RANKL-induced osteoclast differentiation. Int. J. Mol. Med. 2014;33(1):178–184. doi: 10.3892/ijmm.2013.1557
94. de Wilde A., Lieberherr M., Colin C., Pointillart A. A low dose of daidzein acts as an Erβ-selective agonist in trabecular osteoblasts of young female piglets. J. Cell. Physiol. 2004;200(2):253–262. doi: 10,1002/jcp.20008
95. Huh J.E., Lee W.I., Kang J.W., Nam D., Choi D.Y., Park D.S., Lee S.H., Lee J.D. Formononetin attenuates osteoclastogenesis via suppressing the RANKL-induced activation of NF-κB, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 signaling pathway. J. Nat. Prod. 2014;77(11):2423–2431. doi: 10.1021/np500417d
96. Zverev Ya.F., Rykunova A.Ya. Modern nanocarriers as a factor in increasing the bioavailability and pharmacological activity of flavonoids. Appl. Biochem. Microbiol. 2022;58(9):1002–1020. doi: 10.1134/s0003683822090149