Preview

Сибирский научный медицинский журнал

Advanced search

EFFECT OF UROKINASE GENE-KNOCKOUT ON GROWTH OF MELANOMA IN EXPERIMENT

https://doi.org/10.15372/SSMJ20190408

Abstract

The purpose of the study was to reveal special features of the В16/F10 melanoma growth in urokinase (uPA) gene knockout mice with and without chronic neurogenic pain (CNP). Material and methods. The study included male and female С57ВL/6 mice (n = 102) and C57BL/6-Plautm1.1BugThisPlauGFDhu/GFDhu mice with uPA gene knockout  (n = 48). Mice of the main subgroups underwent subcutaneous transplantation of В16/F10 melanoma 2 weeks after bilateral ligation of sciatic nerves (CNP model); mice of the same strain with standard melanoma transplantation served as controls. Results and discussion. Survival of uPA gene knockout mice did not differ from that of normal animals – 1.5 times higher in females than in males (p < 0.05), with melanoma onset in gene-deficient mice a week earlier. The dynamics of tumor growth had pronounced gender differences: in females, the tumor did not grow and its maximal volume prior to death was 1.0 cm3, while tumors in males were characterized by an active growth with two peaks of volume increase (weeks 2 and 4). Melanoma was weakly metastatic – solitary metastases to the lungs (in females) or no metastases, but pulmonary and heart hemorrhages were noted (in males). CNP decreased the survival of uPA gene knockout females, as well as of normal animals, but did not influence the survival of males; primary tumors in genedeficient mice appeared a few days later than in controls but their growth was more intense, with diminished gender differences. Increased metastasis was manifested by the initiation of metastatic lesions to the lungs and liver in males, with maintained pulmonary hemorrhages, and by increased number of metastatic foci in the lungs together with the appearance of pulmonary hemorrhages in females. Conclusions. The influence of uPA gene knockout on the course of В16/F10 melanoma differs in male and female mice. CNP enhances malignant tumor growth, diminishing gender differences, and activates melanoma metastasis.

About the Authors

E. M. Frantsiyants
Rostov Research Institute of Oncology of Minzdrav of Russia
Russian Federation

doctor of biological sciences, professor

344037, Rostov-on-Don, 14th line, 63, bldg. 8



I. V. Kaplieva
Rostov Research Institute of Oncology of Minzdrav of Russia
Russian Federation

candidate of medical sciences

344037, Rostov-on-Don, 14th line, 63, bldg. 8



E. I. Surikova
Rostov Research Institute of Oncology of Minzdrav of Russia
Russian Federation

candidate of biological sciences

344037, Rostov-on-Don, 14th line, 63, bldg. 8



I. V. Neskubina
Rostov Research Institute of Oncology of Minzdrav of Russia
Russian Federation

candidate of biological sciences

344037, Rostov-on-Don, 14th line, 63, bldg. 8



V. A. Bandovkina
Rostov Research Institute of Oncology of Minzdrav of Russia
Russian Federation

candidate of biological sciences

344037, Rostov-on-Don, 14th line, 63, bldg. 8



L. K. Trepitaki
Rostov Research Institute of Oncology of Minzdrav of Russia
Russian Federation
344037, Rostov-on-Don, 14th line, 63, bldg. 8


N. S. Lesovaya
Rostov Research Institute of Oncology of Minzdrav of Russia
Russian Federation
344037, Rostov-on-Don, 14th line, 63, bldg. 8


N. D. Cheryarina
Rostov Research Institute of Oncology of Minzdrav of Russia
Russian Federation
344037, Rostov-on-Don, 14th line, 63, bldg. 8


Yu. A. Pogorelova
Rostov Research Institute of Oncology of Minzdrav of Russia
Russian Federation

candidate of biological sciences

344037, Rostov-on-Don, 14th line, 63, bldg. 8



L. A. Nemashkalova
Rostov Research Institute of Oncology of Minzdrav of Russia
Russian Federation
344037, Rostov-on-Don, 14th line, 63, bldg. 8


References

1. Kit O.I., Frantsiyants E.M., Kotieva I.M., Kaplieva I.V., Trepitaki L.K., Bandovkina V.A., Rozenko L Ya., Cheryarina N.D., Pogorelova Yu.A. Some mechanisms of increasing malignancy of B16/F10 melanoma in female mice with chronic pain. Rossiyskiy zhurnal boli = Russian Journal of Pain. 2017; 53 (2): 14–20. [In Russian].

2. Almholt K., Lund L.R., Rygaard J., Nielsen B.S., Danø K., Rømer J., Johnsen M. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. Int. J. Cancer. 2005; 113 (4): 525–532. doi 10.1002/ijc.20631.

3. Bruncko M., McClellan W.J., Wendt M.D., Sauer D.R., Geyer A., Dalton C.R., Kaminski M.A., Weitzberg M., Gong J., Dellaria J.F., Mantei R., Zhao X., Nienaber V.L., Stewart K., Klinghofer V., Bouska J., Rockway T.W., Giranda V.L. Naphthamidine urokinase plasminogen activator inhibitors with improved pharmacokinetic properties. Bioorg. Med. Chem. Lett. 2005; 15: 93–98. doi 10.1016/j.bmcl.2004.10.026.

4. Cathcart J., Pulkoski-Gross A., Cao J. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis. 2015; 2: 26–34. doi 10.1016/j.gendis.2014.12.002.

5. Fernández-Lao C., Cantarero-Villanueva I., Fernández-de-las-Peñas C., Del-Moral-Ávila R., Menjón-Beltrán S., Arroyo-Morales M. Widespread mechanical pain hypersensitivity as a sign of central sensitization after breast cancer surgery: comparison between mastectomy and lumpectomy. Pain Med. 2011; 12 (1): 72–78. doi 10.1111/j.1526-4637.2010.01027.

6. Frese K.K., Tuveson D.A. Maximizing mouse cancer models. Nat. Rev. Cancer. 2007; 7 (9): 645–58. doi 10.1038/nrc2192.

7. Gutierrez L.S., Schulman A., Brito-Robinson T., Noria F., Ploplis V.A., Castellino F.J. Tumor development is retarded in mice lacking the gene for urokinase-type plasminogen activator or its inhibitor, plasminogen activator inhibitor-1. Cancer Res. 2000; 60 (20): 5839–5847.

8. Heinemann V., Ebert M.P., Laubender R.P., Bevan P., Mala C., Boeck S. Phase II randomised proofof-concept study of the urokinase inhibitor upamostat (WX-671) in combination with gemcitabine compared with gemcitabine alone in patients with non-resectable, locally advanced pancreatic cancer. Br. J. Cancer. 2013; 108 (4): 766–770. doi 10.1038/bjc.2013.62.

9. Jankun J., Keck R.W., Selman S.H. Epigallocatechin-3-gallate prevents tumor cell implantation/growth in an experimental rat bladder tumor model. Int. J. Oncol. 2014; 44: 147–152. doi 10.3892/ijo.2013.2174.

10. Jankun J., Selman S.H., Aniola J., Skrzypczak-Jankun E. Nutraceutical inhibitors of urokinase: Potential applications in prostate cancer prevention and treatment. Oncol. Rep. 2006; 16: 341–346.

11. Katz B.A., Sprengeler P.A., Luong C., Verner E., Elrod K., Kirtley M., Janc J., Spencer J.R., Breitenbucher J.G., Hui H., McGee D., Allen D., Martelli A., Mackman R.L. Engineering inhibitors highly selective for the S1 sites of Ser190 trypsin-like serine protease drug targets. Chem. Biol. 2001; 8: 1107–1121. doi 10.1016/S1074-5521(01)00084-9.

12. Lampreht Tratar U., Horvat S., Cemaza M. Transgenic mouse models in cancer research. Front. Oncol. 2018; 8: 268. doi 10.3389/fonc.2018.00268.

13. Lewandoski M. Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2001; 2 (10): 743–755.

14. Mahmood N., Mihalcioiu C., Rabbani S.A. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): Diagnostic, prognostic, and therapeutic applications. Front. Oncol. 2018; 8: 24. doi 10.3389/fonc.2018.00024.

15. Malfliet A., Leysen L., Pas R., Kuppens K., Nijs J., van Wilgen P., Huysmans E., Goudman L., Ickmans K. Modern pain neuroscience in clinical practice: applied to post-cancer, paediatric and sportsrelated pain. Braz. J. Phys. Ther. 2017; 21 (4): 225–232. doi 10.1016/j.bjpt.2017.05.009.

16. Ogilvie L.A., Kovachev A., Wierling C., Lange B.M., Lehrach H. Models of models: a translational route for cancer treatment and drug development. Front. Oncol. 2017; 7: 219. doi: 10.3389/fonc.2017.00219.

17. Pérez-Guijarro E., Day C.P., Merlino G., Zaidi M.R. Genetically engineered mouse models of melanoma. Cancer. 2017; 123 (S11): 2089–2103. doi 10.1002/cncr.30684.

18. Schmitt M., Harbeck N., Brünner N., Jänicke F., Meisner C., Mühlenweg B., Jansen H., Dorn J., Nitz U., Kantelhardt E.J., Thomssen C. Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Exp. Rev. Mol. Diagn. 2011; 11: 617–634. doi 10.1586/erm.11.47.

19. Walrath J.C., Hawes J.J., van Dyke T., Reilly K.M. Genetically engineered mouse models in cancer research. Adv. Cancer Res. 2010; 106: 113–164. doi 10.1016/S0065-230X(10)06004-5.

20. Wyganowska-Świątkowska M., Tarnowski M., Murtagh D., Skrzypczak-Jankun E., Jankun J. Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review). Int. J. Mol. Med. 2018; 43 (1): 15–25. doi 10.3892/ijmm.2018.3983.

21. Zengel P., Ramp D., Mack B., Zahler S., Berghaus A., Muehlenweg B., Gires O., Schmitz S. Multimodal therapy for synergic inhibition of tumour cell invasion and tumour-induced angiogenesis. BMC Cancer. 2010; 10: 92. doi 10.1186/1471-2407-10-92.


Review

For citations:


Frantsiyants E.M., Kaplieva I.V., Surikova E.I., Neskubina I.V., Bandovkina V.A., Trepitaki L.K., Lesovaya N.S., Cheryarina N.D., Pogorelova Yu.A., Nemashkalova L.A. EFFECT OF UROKINASE GENE-KNOCKOUT ON GROWTH OF MELANOMA IN EXPERIMENT. Сибирский научный медицинский журнал. 2019;39(4):62-70. (In Russ.) https://doi.org/10.15372/SSMJ20190408

Views: 292


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)