OBTAINING CHIMERIC VARIANTS HBcAg EXPOSING HIV-1 MPER FRAGMENTS
https://doi.org/10.15372/SSMJ20190407
Abstract
The HIV-1 epidemic is one of the most acute global health problems. For several reasons, an effective vaccine against this infection has not yet been created. Currently, an important direction in the development of a vaccine against HIV / AID S is the design of immunogens that would be able to induce antibodies that neutralize a high diversity of HIV-1 strains (bNAbs). One approach to creating such immunogens is the construction of chimeric virus-like particles (VLPs) exposing epitopes recognized by bNAbs. The aim of the study was to obtain and characterize chimeric VLPs based on HBcAg, exposing epitopes recognized by bNAbs 2F5 and 4E10. Material and methods. The producing strains of chimeric HBcAg variants were obtained by transforming E. coli BL21 cells with recombinant plasmids carrying the HBcAg genes and containing insertions encoding bNAbs epitopes 2F5 and 4E10. Purification of recombinant proteins was performed using gel filtration on a sepharose CL-6B column. The ability of recombinant HBcAg to form virus-like particles was assessed using electron microscopy. Analysis of the antigenic properties of epitopes in the composition of chimeric variants of HBcAg was performed using immunoblotting. Results. A modified nucleotide sequence of the HBcAg gene was obtained, which included the introduction of unique restriction sites flanking the region of the main antigenic determinant of the core. Based on this genetic construct, three recombinant plasmids encoding chimeric HBcAg variants, including epitopes of bNAbs 2F5 and 4E10, were obtained. Using immunoblotting, it was found that epitopes recognized by bNAbs retain their antigenic properties after insertion into the HBcAg.
About the Authors
A. P. RudometovRussian Federation
630559, Koltsovo, Novosibirsk region
N. B. Rudometova
Russian Federation
630559, Koltsovo, Novosibirsk region
B. N. Zaytsev
Russian Federation
candidate of physical mathematical sciences
630559, Koltsovo, Novosibirsk region
L. R. Lebedev
Russian Federation
doctor of medical sciences
630559, Koltsovo, Novosibirsk region
A. A. Ilyichev
Russian Federation
doctor of biological sciences
630559, Koltsovo, Novosibirsk region
L. I. Karpenko
Russian Federation
doctor of biological sciences
630559, Koltsovo, Novosibirsk region
References
1. Rudometov A.P., Andreeva N.B., Chikaev A.N., Shcherbakova N.S., Kaplina O .N., Karpenko L.I. Antigenic properties of an artificial polyepitopic HIV immunogen. Sibirskiy nauchnyy meditsinskiy zhurnal = Siberian Scientific Medical Journal. 2018; 8 (4): 37–43. [In Russian].
2. Karpenko L.I., Ivanisenko V.A., Pika I .A., Chikaev N.A., Eroshkin A.M., Melamed N.V., Veremeyko T.A., Il’ichev A.A. Analysis of foreign epitope inserts in HBcAg. Approaches to solving the problem of core particle self-assembly. Mol. Biol. (Mosc.) 2000; 34 (2): 194–199.
3. Rudometov A.P., Chikaev A.N., Andreeva N.B., Shcherbakova N.S., Lebedev L.R., Kaplina O .N., Il’ichev A.A., Karpenko L.I. Chimeric protein HBcAg carrying the epitope mimetic recognized by the monoclonal antibody VRC01. Voprosy biologicheskoy, meditsinskoy i farmatsevticheskoy khimii = Problems of Biological, Medical and Pharmaceutical Chemistry. 2018; 21 (4): 46–51. [In Russian].
4. Rudometov A.P., Andreeva N.B., Chikaev A.N., Shcherbakova N.S., Kaplina O .N., Karpenko L.I. Antigenic properties of an artificial polyepitopic HIV immunogen. Sibirskiy nauchnyy meditsinskiy zhurnal = Siberian Scientific Medical Journal. 2018; 8 (4): 37–43. [In Russian].
5. Arora U., Tyagi P., Swaminathan S., Khannaet N. Chimeric Hepatitis B core antigen virus-like particles displaying the envelope domain III of dengue virus type 2. J. Nanobiotechnol. 2012; 10 (30): 1–6.
6. Rudometov A.P., Chikaev A.N., Andreeva N.B., Shcherbakova N.S., Lebedev L.R., Kaplina O .N., Il’ichev A.A., Karpenko L.I. Chimeric protein HBcAg carrying the epitope mimetic recognized by the monoclonal antibody VRC01. Voprosy biologicheskoy, meditsinskoy i farmatsevticheskoy khimii = Problems of Biological, Medical and Pharmaceutical Chemistry. 2018; 21 (4): 46–51. [In Russian].
7. Baryshev P.B., Bogachev V.V., Gashnikova N.M. HIV-1 genetic diversity in Russia: CRF63_02A1, a new HIV type 1 genetic variant spreading in Siberia. AIDS Res. Hum. Retroviruses. 2014; 30 (6): 592–597.
8. Arora U., Tyagi P., Swaminathan S., Khannaet N. Chimeric Hepatitis B core antigen virus-like particles displaying the envelope domain III of dengue virus type 2. J. Nanobiotechnol. 2012; 10 (30): 1–6.
9. Burton D.R., Mascola J.R. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat. Immunol. 2015; 16 (6): 571–576.
10. Baryshev P.B., Bogachev V.V., Gashnikova N.M. HIV-1 genetic diversity in Russia: CRF63_02A1, a new HIV type 1 genetic variant spreading in Siberia. AIDS Res. Hum. Retroviruses. 2014; 30 (6): 592–597.
11. Frietze K.M., Peabody D.S., Chackerian B. Engineering virus-like particles as vaccine platforms. Curr. Opin. Virol. 2016; 18: 44–49.
12. Burton D.R., Mascola J.R. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat. Immunol. 2015; 16 (6): 571–576.
13. Grgacic E.V.L., Anderson D .A. Virus-like particles: passport to immune recognition. Methods. 2006; 40 (1): 60–65.
14. Frietze K.M., Peabody D.S., Chackerian B. Engineering virus-like particles as vaccine platforms. Curr. Opin. Virol. 2016; 18: 44–49.
15. Haynes B.F., Burton D.R. Developing an HIV vaccine. Science. 2017; 355 (6330): 1129–1130.
16. Grgacic E.V.L., Anderson D .A. Virus-like particles: passport to immune recognition. Methods. 2006; 40 (1): 60–65.
17. Jegerlehner A., Tissot A., Lechner F. A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses. Vaccine. 2002; 20 (25–26): 3104–3112.
18. Haynes B.F., Burton D.R. Developing an HIV vaccine. Science. 2017; 355 (6330): 1129–1130.
19. Jennings G.T., Bachmann M.F. The coming of age of virus-like particle vaccines. Biol. Chem. 2008; 389 (5): 521–536.
20. Jegerlehner A., Tissot A., Lechner F. A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses. Vaccine. 2002; 20 (25–26): 3104–3112.
21. Karpenko L.I., Ivanisenko V.A., Pika I .A. Insertion of foreign epitopes in HBcAg: how to make the chimeric particle assemble. Amino Acids. 2000; 18 (4): 329–337.
22. Jennings G.T., Bachmann M.F. The coming of age of virus-like particle vaccines. Biol. Chem. 2008; 389 (5): 521–536.
23. Korber B., Hraber P., Wagh K., Hahn B.H. Polyvalent vaccine approaches to combat HIV-1 diversity. Immunol. Rev. 2017; 275 (1): 230–244.
24. Karpenko L.I., Ivanisenko V.A., Pika I .A. Insertion of foreign epitopes in HBcAg: how to make the chimeric particle assemble. Amino Acids. 2000; 18 (4): 329–337.
25. Manolova V., Flace A., Bauer M., Schwarz K., Saudan P., Bachmann M.F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008; 38 (5): 1404–1413.
26. Korber B., Hraber P., Wagh K., Hahn B.H. Polyvalent vaccine approaches to combat HIV-1 diversity. Immunol. Rev. 2017; 275 (1): 230–244.
27. McCoy L.E., Burton D.R. Identification and specificity of broadly neutralizing antibodies against HIV. Immunol. Rev. 2017; 275 (1): 11–20.
28. Manolova V., Flace A., Bauer M., Schwarz K., Saudan P., Bachmann M.F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008; 38 (5): 1404–1413.
29. Medina-Ramírez M., Garces F., Escolano A., Skog P., de Taeye S.W., Del Moral-Sanchez I ., McGuire A.T., Yasmeen A., Behrens A.J., Ozorowski G. Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. J. Exp. Med. 2017; 214 (9): 2573–2590.
30. McCoy L.E., Burton D.R. Identification and specificity of broadly neutralizing antibodies against HIV. Immunol. Rev. 2017; 275 (1): 11–20.
31. Montero M., van Houten N.E., Wang X., Scott J.K. The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol. Mol. Biol. Rev. 2008; 72: 54–84.
32. Medina-Ramírez M., Garces F., Escolano A., Skog P., de Taeye S.W., Del Moral-Sanchez I ., McGuire A.T., Yasmeen A., Behrens A.J., Ozorowski G. Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. J. Exp. Med. 2017; 214 (9): 2573–2590.
33. Muñoz-Barroso I., Salzwedel K., Hunter E., Blumenthal R. Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J. Virol. 1999; 73 (7): 6089–6092.
34. Montero M., van Houten N.E., Wang X., Scott J.K. The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol. Mol. Biol. Rev. 2008; 72: 54–84.
35. Pumpens P., Grens E. HBV core particles as a carrier for B cell/T cell epitopes. Intervirology. 2001; 44. 98–114.
36. Muñoz-Barroso I., Salzwedel K., Hunter E., Blumenthal R. Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J. Virol. 1999; 73 (7): 6089–6092.
37. Pumpens P., Grens E. The true story and advantages of the famous Hepatitis B virus core particles: Outlook 2016. Mol. Biol. 2016; 50: 489–509.
38. Pumpens P., Grens E. HBV core particles as a carrier for B cell/T cell epitopes. Intervirology. 2001; 44. 98–114.
39. Sahay B., Nguyen C.Q., Yamamoto J.K. Conserved HIV epitopes for an effective HIV vaccine. J. Clin. Cell. Immunol. 2017; 8 (4): 1–27.
40. Pumpens P., Grens E. The true story and advantages of the famous Hepatitis B virus core particles: Outlook 2016. Mol. Biol. 2016; 50: 489–509.
41. Shcherbakova N.S., Shalamova L.A., Delgado E., Fernández-García A., Vega Y., Karpenko L.I., Ilyichev A.A., Sokolov Y.V., Shcherbakov D .N., PérezÁlvarez L., Thomson M.M. Molecular epidemiology, phylogeny, and phylodynamics of CRF63_02A1, a recently originated HIV-1 circulating recombinant form spreading in Siberia. AIDS Res. Hum. Retroviruses. 2014; 30 (9): 912–919.
42. Sahay B., Nguyen C.Q., Yamamoto J.K. Conserved HIV epitopes for an effective HIV vaccine. J. Clin. Cell. Immunol. 2017; 8 (4): 1–27.
43. Whitacre D.C., Lee B.O., Milich D.R. Use of hepadnavirus core proteins as vaccine platforms. Expert Rev. Vaccines. 2009; 8 (11): 1565–1573.
44. Shcherbakova N.S., Shalamova L.A., Delgado E., Fernández-García A., Vega Y., Karpenko L.I., Ilyichev A.A., Sokolov Y.V., Shcherbakov D .N., PérezÁlvarez L., Thomson M.M. Molecular epidemiology, phylogeny, and phylodynamics of CRF63_02A1, a recently originated HIV-1 circulating recombinant form spreading in Siberia. AIDS Res. Hum. Retroviruses. 2014; 30 (9): 912–919.
45. Zabel F., Kündig T.M., Bachmann M.F. Virus-induced humoral immunity: on how B cell responses are initiated. Curr. Opin. Virol. 2013; 3 (3): 357–362.
46. Whitacre D.C., Lee B.O., Milich D.R. Use of hepadnavirus core proteins as vaccine platforms. Expert Rev. Vaccines. 2009; 8 (11): 1565–1573.
47. Zabel F., Kündig T.M., Bachmann M.F. Virus-induced humoral immunity: on how B cell responses are initiated. Curr. Opin. Virol. 2013; 3 (3): 357–362.
Review
For citations:
Rudometov A.P., Rudometova N.B., Zaytsev B.N., Lebedev L.R., Ilyichev A.A., Karpenko L.I. OBTAINING CHIMERIC VARIANTS HBcAg EXPOSING HIV-1 MPER FRAGMENTS. Сибирский научный медицинский журнал. 2019;39(4):55-61. (In Russ.) https://doi.org/10.15372/SSMJ20190407