EXPRESSION OF PROTEIN GENES PARTICIPATING IN FIBROPLASTIC PROCESSES IN MICE LUNG DURING THE DEVELOPMENT OF TUBERCULOUS INFLAMMATION
https://doi.org/10.15372/SSMJ20190403
Abstract
The study analyzes the expression of protein genes involved in intracellular signaling pathways associated with a profibrotic response, activation of epithelial-mesenchymal and endothelial-mesenchymal transitions, in modeling tuberculous granulomatosis and pharmaceutical effects. Material and methods. The study was performed on male BALB/c mice aged two months and weighing 18–22 g. Generalized tuberculous granulomatosis was simulated by a single intravenous (retro-orbital) injection of 0.5 mg BCG vaccine in 0.2 ml of isotonic aqueous NaCl solution (SS), after 4 months a part of mice started to receive treatment drugs, after 2 months the animals were sacrificed by decapitation (6 months after BCG vaccine administration) and their lung tissues were collected. Mice were divided into 6 groups, 5 males in each: intact, which were intravenously into the retro-orbital sinus injected with 0.2 ml SS (C); infected with BCG and receiving SS intraperitoneal injections (BS); infected with BCG and received intraperitoneal injections of isonicotinic acid hydrazide solution (INAH) (BI); infected with BCG and received intraperitoneal injections of dextrazide solution (conjugate of 40 kDa oxidized dextran and INAH) (BD); infected with BCG and received intraperitoneal or inhalation injections of solution of molecular-nanosomal pharmaceutical compositions of oxidized dextran (MNPC) (BMP and BMH, respectively). Finally, the expression of mRNA of matrix metalloproteinase 9, type III procollagen, TGF-β, and transcription factors ZEB1 and Snai1 was determined by real-time PCR in mice lung tissue. Results. The modeling of generalized tuberculous granulomatosis was found to be accompanied by the induction of epithelial-mesenchymal transition and the activation of profibrotic processes, which after 6 months was manifested in increase of the type III collagen α1-chain and TGF-β mRNA expression. Administration of traditional (INAH) and original (dextrazide, MNPC) preparations with anti-tuberculosis activity within two months has inhibitory activity of varying severity in relation to various markers of these processes.
Keywords
About the Authors
P. M. KozhinRussian Federation
candidate of medical sciences
630117, Novosibirsk, Timakov str., 2
A. V. Chechushkov
Russian Federation
candidate of medical sciences
630117, Novosibirsk, Timakov str., 2
N. S. Zaytseva
Russian Federation
candidate of biological sciences
630117, Novosibirsk, Timakov str., 2
M. V. Khrapova
Russian Federation
candidate of biological sciences
630117, Novosibirsk, Timakov str., 2
L. A. Cherdantseva
Russian Federation
candidate of medical sciences
630117, Novosibirsk, Timakov str., 2
630091, Novosibirsk, Frunze str., 17
E. B. Menshchikova
Russian Federation
doctor of medical sciences
630117, Novosibirsk, Timakov str., 2
A. V. Troitsky
Russian Federation
candidate of medical sciences
630117, Novosibirsk, Timakov str., 2
V. A. Shkurupy
Russian Federation
academician of RAS, professor, doctor of medical sciences
630117, Novosibirsk, Timakov str., 2
630091, Novosibirsk, Krasny av., 52
References
1. Das V., Bhattacharya S., Chikkaputtaiah C., Hazra S., Pal M. The basics of epithelial-mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective. J. Cell. Physiol. 2019. doi 10.1002/jcp.28160
2. Filimonov P.N., Shkurupiy V.A., Kurunov Yu.N., Pupyshev A.B., Panasenko S.G. Investigation of fibrosis processes in the liver and lungs in the treatment of chronic tuberculosis in mice with a lysosomotropic isoniazid preparation. Problemy tuberkuleza = Problems of Tuberculosis. 1999; (1): 63–65. [In Russian].
3. Goncalves R.S.G., Pereira M.C., Dantas A.T., Almeida A.R., Marques C.D.L., Rego M., Pitta I .R., Duarte A., Pitta M.G.R. IL-17 and related cytokines involved in systemic sclerosis: Perspectives. Autoimmunity. 2018; 51: (1). 1–9. doi: 10.1080/08916934.2017.1416467.
4. Corbel M., Belleguic C., Boichot E., Lagente V. Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis. Cell Biol. Toxicol. 2002; 18 (1): 51–61.
5. Gonzalez D.M., Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal. 2014; 7 (344): re8. doi: 10.1126/scisignal.2005189.
6. Das V., Bhattacharya S., Chikkaputtaiah C., Hazra S., Pal M. The basics of epithelial-mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective. J. Cell. Physiol. 2019. doi 10.1002/jcp.28160
7. Kage H., Borok Z. EMT and interstitial lung disease: a mysterious relationship. Curr. Opin. Pulm. Med. 2012; 18 (5): 517–523. doi: 10.1097/MCP.0b013e3283566721.
8. Goncalves R.S.G., Pereira M.C., Dantas A.T., Almeida A.R., Marques C.D.L., Rego M., Pitta I .R., Duarte A., Pitta M.G.R. IL-17 and related cytokines involved in systemic sclerosis: Perspectives. Autoimmunity. 2018; 51: (1). 1–9. doi: 10.1080/08916934.2017.1416467.
9. Mamuya F.A., Duncan M.K. aV integrins and TGF-beta-induced EMT: a circle of regulation. J. Cell. Mol. Med. 2012; 16 (3): 445–455. doi: 10.1111/j.1582-4934.2011.01419.x.
10. Gonzalez D.M., Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal. 2014; 7 (344): re8. doi: 10.1126/scisignal.2005189.
11. Pardali K., Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim. Biophys. Acta. 2007; 1775 (1): 21–62. doi: 10.1016/j.bbcan.2006.06.004.
12. Kage H., Borok Z. EMT and interstitial lung disease: a mysterious relationship. Curr. Opin. Pulm. Med. 2012; 18 (5): 517–523. doi: 10.1097/MCP.0b013e3283566721.
13. Robert S., Gicquel T., Victoni T., Valenca S., Barreto E., Bailly-Maitre B., Boichot E., Lagente V. Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis. Biosci. Rep. 2016; 36 (4): e00360. doi: 10.1042/BSR20160107.
14. Mamuya F.A., Duncan M.K. aV integrins and TGF-beta-induced EMT: a circle of regulation. J. Cell. Mol. Med. 2012; 16 (3): 445–455. doi: 10.1111/j.1582-4934.2011.01419.x.
15. Rosenbloom J., Castro S.V., Jimenez S.A. Narrative review: fibrotic diseases: cellular and molecular mechanisms and novel therapies. Ann. Intern. Med. 2010; 152 (3): 159–166. doi: 10.7326/0003-4819-152-3-201002020-00007.
16. Pardali K., Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim. Biophys. Acta. 2007; 1775 (1): 21–62. doi: 10.1016/j.bbcan.2006.06.004.
17. Saito A., Horie M., Nagase T. TGF-beta signaling in lung health and disease. Int. J. Mol. Sci. 2018; 19 (8): E2460. doi: 10.3390/ijms19082460.
18. Robert S., Gicquel T., Victoni T., Valenca S., Barreto E., Bailly-Maitre B., Boichot E., Lagente V. Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis. Biosci. Rep. 2016; 36 (4): e00360. doi: 10.1042/BSR20160107.
19. Samarakoon R., Higgins P.J. Integration of non-SMAD and SMAD signaling in TGF-beta1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells. Thromb. Haemost. 2008; 100 (6): 976–983.
20. Rosenbloom J., Castro S.V., Jimenez S.A. Narrative review: fibrotic diseases: cellular and molecular mechanisms and novel therapies. Ann. Intern. Med. 2010; 152 (3): 159–166. doi: 10.7326/0003-4819-152-3-201002020-00007.
21. Squeglia F., Ruggiero A., Berisio R. Collagen degradation in tuberculosis pathogenesis: the biochemical consequences of hosting an undesired guest. Biochem. J. 2018; 475 (19): 3123–3140. doi: 10.1042/BCJ20180482.
22. Saito A., Horie M., Nagase T. TGF-beta signaling in lung health and disease. Int. J. Mol. Sci. 2018; 19 (8): E2460. doi: 10.3390/ijms19082460.
23. Stone R.C., Pastar I., Ojeh N., Chen V., Liu S., Garzon K.I., Tomic-Canic M. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 2016; 365 (3): 495–506. doi: 10.1007/s00441-016-2464-0.
24. Samarakoon R., Higgins P.J. Integration of non-SMAD and SMAD signaling in TGF-beta1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells. Thromb. Haemost. 2008; 100 (6): 976–983.
25. Weiskirchen R., Weiskirchen S., Tacke F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol. Aspects Med. 2019; 65: 2–15. doi: 10.1016/j.mam.2018.06.003
26. Squeglia F., Ruggiero A., Berisio R. Collagen degradation in tuberculosis pathogenesis: the biochemical consequences of hosting an undesired guest. Biochem. J. 2018; 475 (19): 3123–3140. doi: 10.1042/BCJ20180482.
27. Willis B.C., Liebler J.M., Luby-Phelps K., Nicholson A.G., Crandall E.D., du Bois R.M., Borok Z. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factorbeta1: potential role in idiopathic pulmonary fibrosis. Am. J. Pathol. 2005; 166 (5): 1321–1332.
28. Stone R.C., Pastar I., Ojeh N., Chen V., Liu S., Garzon K.I., Tomic-Canic M. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 2016; 365 (3): 495–506. doi: 10.1007/s00441-016-2464-0.
29. Wilson M.S., Madala S.K., Ramalingam T.R., Gochuico B.R., Rosas I .O., Cheever A.W., Wynn T.A. Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J. Exp. Med. 2010; 207 (3): 535–552. doi: 10.1084/jem.20092121.
30. Weiskirchen R., Weiskirchen S., Tacke F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol. Aspects Med. 2019; 65: 2–15. doi: 10.1016/j.mam.2018.06.003
31. Willis B.C., Liebler J.M., Luby-Phelps K., Nicholson A.G., Crandall E.D., du Bois R.M., Borok Z. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factorbeta1: potential role in idiopathic pulmonary fibrosis. Am. J. Pathol. 2005; 166 (5): 1321–1332.
32. Wilson M.S., Madala S.K., Ramalingam T.R., Gochuico B.R., Rosas I .O., Cheever A.W., Wynn T.A. Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J. Exp. Med. 2010; 207 (3): 535–552. doi: 10.1084/jem.20092121.
Review
For citations:
Kozhin P.M., Chechushkov A.V., Zaytseva N.S., Khrapova M.V., Cherdantseva L.A., Menshchikova E.B., Troitsky A.V., Shkurupy V.A. EXPRESSION OF PROTEIN GENES PARTICIPATING IN FIBROPLASTIC PROCESSES IN MICE LUNG DURING THE DEVELOPMENT OF TUBERCULOUS INFLAMMATION. Сибирский научный медицинский журнал. 2019;39(4):22-29. (In Russ.) https://doi.org/10.15372/SSMJ20190403