Preview

Сибирский научный медицинский журнал

Advanced search

MORPHOFUNCTIONAL CHARACTERISTICS OF MITOCHONDRIA AND IMMUNOHISTOCHEMICAL APPROACHES TO THEIR STUDY

https://doi.org/10.15372/SSMJ20190401

Abstract

Violation of the functions of mitochondria is accompanied by any disease, so further study of the functional characteristics of mitochondria in various pathologies in the clinic and experiment, as well as the search for new diagnostic markers is promising and relevant. The purpose of this review is to summarize and systematize the literature data on morphofunctional characteristics and molecular immunohistochemical markers used to assess the function of mitochondria. The most characteristic feature of these organelles is the presence of a large number of enzymes involved in oxidative phosphorylation and energy supply to the cell. Also, the aim was to allocate so-called mitochondrial diseases associated with genetic, structural, biochemical defects of mitochondria, including those leading to energy deficiency of cells. Mitochondrial diseases are transmitted through the female line, since only the ovum contains mitochondria. Hereditary mitochondrial diseases associated with mutations in the genes encoding the synthesis of mitochondrial proteins – Bart’s syndrome, Kearns – Sayre syndrome, Pearson’s syndrome, and others are known. In addition, mitochondria are involved in the storage and transmission of hereditary information, apoptosis and plastic processes. There are a number of molecular markers, the use of which allows a detailed study of the activity of mitochondria under various experimental effects. The nearly thousand mitochondrial markers are known, but this review encloses the main ones.

About the Authors

L. I. Bon
Grodno State Medical University
Belarus

candidate of biological sciences

Republic Belarus, 230009, Grodno, Gorkogo str., 80



N. Ye. Maksimovich
Grodno State Medical University
Belarus

doctor of medical sciences, professor

Republic Belarus, 230009, Grodno, Gorkogo str., 80



References

1. Baertling F., Sanchez-Caballero L., van den Brand M.A.M., Fung C.W., Chan S.H., Wong V.C., Hellebrekers D.M.E., de Coo I.F.M., Smeitink J.A.M., Rodenburg R.J.T., Nijtmans L.G.J. NDUFA9 point mutations cause a variable mitochondrial complex I assembly defect. Clin. Genet. 2018; 93: 111–118.

2. Boumans H., Grivell L.A., Berden J.A. The respiratory chain in yeast behaves as a single functional unit. J. Biol. Chem. 1998; 273: 4872–4877.

3. Boyer P.D. ATP synthase – past and future. Biochim. Biophys. Acta. 1998; 1365: 3–9.

4. Brand M.D., Murphy M.P. Control of electron flux through the respiratory chain in mitochondria and cells. Biol. Rev. 1987; 62: 141–193.

5. Britti E., Delaspre F., Feldman A., Osborne M., Greif H., Tamarit J., Ros J. Frataxin-deficient neurons and mice models of Friedreich ataxia are improved by TAT-MTScs-FXN treatment. J. Cell. Mol. Med. 2018; 22: 834–848.

6. Capaldi R.A., Darley-Usmar V., Fuller S., Millet F. Structural and functional features of the interaction of cytochrome с with complex III and cytochrome с oxidase. FEBS Lett. 1982; 138: 1–7.

7. Casey R.P. Membrane reconstitution of the energy-conserving enzymes of oxidative phosphorylation. Biochim. Biophys. Acta. 1984; 768: 319–347.

8. Chao D.T., Korsmeyer S.J. BCL-2 family: regulators of cell death. Annu. Rev. Immunol. 1998; 16: 395–419.

9. Chen X., Lu J. Analysis of mitochondrial gene mutations in a child with Leigh syndrome. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2019; 36 (4): 318–321.

10. Deng S., Li Y., Yi G., Lei B., Guo M., Xiang W., Chen Z., Liu Y., Qi S. Overexpression of COX7A2 is associated with a good prognosis in patients with glioma. J. Neurooncol. 2018; 136 (1): 41–50.

11. Festa B.P., Chen Z., Berquez M., Debaix H., Tokonami N., Prange J.A., Hoek G.V., Alessio C., Raimondi A., Nevo N., Giles R.H., Devuyst O., Luciani A. Impaired autophagy bridges lysosomal storage disease and epithelial dysfunction in the kidney. Nat. Commun. 2018; 9: 161.

12. Hackenbrock C.R. Lateral diffusion and electron transfer in the mitochondrial inner membrane. Trends Biochem. Sci. 1981; 6: 151–154.

13. Hauser D.N., Mamais A., Conti M.M., Primiani C.T., Kumaran R., Dillman A.A., Langston R.G., Beilina A., Garcia J.H., Diaz-Ruiz A., Bernier M., Fiesel F.C., Hou X., Springer W., Li Y., de Cabo R., Cookson M.R. Hexokinases link DJ-1 to the PINK1/ parkin pathway. Mol. Neurodegener. 2017; 12: 70–77.

14. Hoffmann C., Hockele S., Kappler L., Hrabe de Angelis M., Haring H.U., Weigert C. The effect of differentiation and TGFß on mitochondrial respiration and mitochondrial enzyme abundance in cultured primary human skeletal muscle cells. Sci. Rep. 2018; 8: 737.

15. Holvoet P., Vanhaverbeke M., Geeraert B., de Keyzer D., Hulsmans M., Janssens S. Low cytochrome oxidase 1 links mitochondrial dysfunction to atherosclerosis in mice and pigs. PLoS One. 2017; 12: e0170307.

16. Klingenberg M. Principles of carrier catalysis elucidated by comparing two similar membrane translocators from mitochondria, the ADP/ATP carrier and the uncoupling protein. Ann. N. Y. Acad. Sci. 1985; 456: 279–288.

17. Magnoni R., Palmfeldt J., Hansen J., Christensen J.H., Corydon T.J., Bross P. The Hsp60 folding machinery is crucial for manganese superoxide dismutase folding and function. Free Radic Res. 2014; 48: 168–179.

18. Mescher A.L. Junqueira’s Basic Histology: text and atlas. 15th ed. N.Y.: McGraw-Hill, 2018.

19. Mikkilineni L., Whitaker-Menezes D., Domingo-Vidal M., Sprandio J. Hodgkin lymphoma: A complex metabolic ecosystem with glycolytic reprogramming of the tumor microenvironment. Semin. Oncol. 2017; 44: 218–225.

20. Pecina P., Nůsková H., Karbanová V., Kaplanová V., Mráček T., Houštěk J. Role of the mitochondrial ATP synthase central stalk subunits γ and δ in the activity and assembly of the mammalian enzyme. Biochim. Biophys. Acta Bioenerg. 2018; 1859 (5): 374–381.

21. Peng Y.T., Chen P., Ouyang R.Y., Song L. Multifaceted role of prohibitin in cell survival and apoptosis. Apoptosis. 2015; 20 (9): 1135–1149.

22. Powell K.A., Davies J.R., Taylor E., Wride M.A., Votruba M. Mitochondrial localization and ocular expression of mutant Opa3 in a mouse model of 3-methylglutaconicaciduria type III. Invest. Ophthalmol. Vis. Sci. 2011; 52 (7): 4369–4380.

23. Prince R.C. The proton pump of cytochrome oxidase. Trends Biochem. Sci. 1988; 13: 159–160.

24. Sas K., Robotka H., Toldi J., Vécsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J. Neurol. Sci. 2007; 15: 221–239.

25. Shiba S., Ikeda K., Horie-Inoue K., Nakayama A., Tanaka T., Inoue S. Deficiency of COX7RP, a mitochondrial supercomplex assembly promoting factor, lowers blood glucose level in mice. Sci. Rep. 2017; 7: 7606.

26. Silva S., Ghiarone T., Schreiber K., Grant D., White T., Frisard M., Sukhanov S., Chandrasekar B., Delafontaine P., Yoshida T. Angiotensin II suppresses autophagy and disrupts the ultrastructural morphology and function of mitochondria in mouse skeletal muscle. J. Appl. Physiol. 2019. 126 (6): 1550–1562.

27. Slater Е.С. The Q Cycle, an ubiquitous mechanism of electron transfer. Trends Biochem. Sci. 1983; 8: 239–242.

28. Srere P.A. The structure of the mitochondrial inner membrane-matrix compartment. Trends Biochem. Sci. 1982; 7: 375–378.

29. Teixeira F.K., Sanchez C.G., Hurd T.R., Seifert J.R., Czech B., Preall J.B., Hannon G.J., Lehmann R. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Nat. Cell Biol. 2015; 17 (5): 689–696.

30. Van Eden W., Jansen M., Ludwig I., Leufkens P. Heat shock proteins can be surrogate autoantigens for induction of antigen specific therapeutic tolerance in rheumatoid arthritis. Front. Immunol. 2019; 10: 279.

31. Veis D.J., Sorenson C.M., Shutter J.R., Korsmeyer S.J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 1993; 75: 229–240.

32. Wallace L., Cherian A., Adamson P. Comparison of pre- and post-translational expressions of COXIV-1 and MT-ATPase 6 genes in colorectal adenoma-carcinoma tissues. J. Carcinog. Mutagen. 2018; 9: 1000319.

33. Young B. Wheater’s Functional Histology: a text and colour atlas. 6th ed. Philadelphia: Churchill Livingstone, 2013. 464 p.

34. Zhang K., Wang G., Zhang X., Hüttemann P.P., Qiu Y., Liu J., Mitchell A., Lee I., Zhang C., Lee J.S., Pecina P., Wu G., Yang Z.Q., Hüttemann M., Grossman L.I. COX7AR is a stress-inducible mitochondrial COX subunit that promotes breast cancer malignancy. Sci. Rep. 2016; 6: 31742.

35. Zhang X., Zhao X., Li Y., Zhou Y., Zhang Z. Long noncoding RNA SOX21-AS1 promotes cervical cancer progression by competitively sponging miR-7/VDAC1. J. Cell. Physiol. 2019; 234 (10): 17494–17504.


Review

For citations:


Bon L.I., Maksimovich N.Ye. MORPHOFUNCTIONAL CHARACTERISTICS OF MITOCHONDRIA AND IMMUNOHISTOCHEMICAL APPROACHES TO THEIR STUDY. Сибирский научный медицинский журнал. 2019;39(4):5-11. (In Russ.) https://doi.org/10.15372/SSMJ20190401

Views: 74074


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)