Original synthetic monophenolic antioxidant with combined effect inhibits tumor growth in vivo
https://doi.org/10.18699/SSMJ20240612
Abstract
Reactive oxygen metabolites and antioxidants, as well as the redox-sensitive signaling Nrf2-dependent pathway, play a dual role in the formation, growth and progression of malignant neoplasms. The aim of the study was to investigate the ability of the original synthetic monophenolic antioxidant of combined action to influence tumor growth in vivo and the side effects of cytostatic use. Material and methods. Lewis lung carcinoma (LLC) was used as an experimental model of malignant growth. The study was performed on 120 female C57Bl/6 mice, which were divided into 12 groups; the animals were weighed weekly. Mice of the corresponding groups received intragastrically a solution of sodium 3-(3′-tert-butyl-4′-hydroxyphenyl)propylthiosulfonate (TS-13) (100 mg/kg body weight), a suspension of tert-butylhydroquinone (tBHQ) or a solvent (0.9% NaCl solution) throughout the experiment. 28 days after the start of TS-13 and tBHQ administration, mice were implanted intramuscularly with a suspension of LLC cells at a dose of 2×105 cells/mouse; on the 7th and 14th days of tumor development, a solution of doxorubicin was administered intraperitoneally twice at a cumulative dose of 8 mg/kg body weight (4/5 LD10). On the 35th day of tumor growth, the animals were removed from the experiment, the tumor was extracted, weighed and its linear dimensions were determined; the tumor mass coefficient and volume were calculated, respectively. The spleen mass coefficient was also estimated. Results and discussion. On the 7th and 14th days of tumor growth, the body weight of animals receiving TS-13 and tBHQ was statistically significantly greater than that of other tumor carriers. Administration of TS-13 to mice inhibited tumor growth as effectively as doxorubicin, and more significantly when used in combination; tBHQ did not exert an independent inhibitory effect, and did not enhance its effect in combination with the cytostatic. Doxorubicin significantly reduced the spleen mass coefficient, while TS-13 and tBHQ statistically significantly reduced the effect of the cytostatic. Monotherapy with doxorubicin was accompanied by hair loss on the dorsal surface (8 animals out of 10), while no alopecia was observed with the combined administration of the cytostatic with TS-13 and tBHQ. Conclusions. Monophenol TS-13, a direct antioxidant and inducer of the Keap1/Nrf2/ARE system, is comparable to doxorubicin in terms of its antitumor effect. The use of TS-13 allows to significantly reduce the negative manifestations associated with malignant growth and the side effects of chemotherapy, such as cachexia, splenotoxity, and alopecia.
Keywords
About the Authors
E. B. MenshchikovaRussian Federation
Elena B. Menshchikova - doctor of medical sciences.
630117, Novosibirsk, Timakova st., 2
M. V. Khrapova
Russian Federation
Marina V. Khrapova - candidate of biological sciences.
630117, Novosibirsk, Timakova st., 2
P. M. Kozhin
Russian Federation
Peter M. Kozhin - candidate of medical sciences.
630117, Novosibirsk, Timakova st., 2
A. V. Chechushkov
Russian Federation
Anton V. Chechushkov - candidate of medical sciences.
630117, Novosibirsk, Timakova st., 2
E. S. Petrova
Russian Federation
Ekaterina S. Petrova - candidate of chemical sciences.
630117, Novosibirsk, Timakova st., 2
A. E. Serykh
Russian Federation
Anastasia E. Serykh.
630117, Novosibirsk, Timakova st., 2
L. P. Romakh
Russian Federation
Lidiya P. Romakh.
630117, Novosibirsk, Timakova st., 2
N. V. Kandalintseva
Russian Federation
Natalya V. Kandalintseva - doctor of chemical sciences.
630126, Novosibirsk, Vilyuyskaya st., 28
References
1. Global cancer observatory. Available at: https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdf
2. Healthcare in Russia. 2023. Statistical collection Rosstat. Moscow, 2023. 179 p. [In Russian].
3. Zenkov N.K., Menshchikova E.B., Shkurupiy V.A. Aging and inflammation. Uspekhi sovremennoy biologii = Biology Bulletin Reviews. 2010;130(1):20–37. [In Russian].
4. Zenkov N.K., Kozhin P.M., Vcherachnyaya A.V., Martinovich G.G., Kandalintseva N.V., Menshchikova E.B. Features of redox regulation in tumor cells. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2019;39(2):11–26. [In Russian]. doi: 10.15372/SSMJ20190202
5. Shrestha J., Limbu K.R., Chhetri R.B., Paudel K.R., Hansbro P.M., Oh Y.S., Baek D.J., Ki S.H., Park E.Y. Antioxidant genes in cancer and metabolic diseases: Focusing on Nrf2, sestrin, and heme oxygenase 1. Int. J. Biol. Sci. 2024;20(12):4888–4907. doi: 10.7150/ijbs.98846
6. Wang R., Liang L., Matsumoto M., Iwata K., Umemura A., He F. Reactive oxygen species and NRF2 signaling, friends or foes in cancer? Biomolecules. 2023;13(2):353. doi: 10.3390/biom13020353
7. Wei S., Han C., Mo S., Huang H., Luo X. Advancements in programmed cell death research in antitumor therapy: a comprehensive overview. Apoptosis. 2024: Online ahead of print. doi: 10.1007/s10495-024-02038-0
8. Chang L.C., Chiang S.K., Chen S.E., Hung M.C. Exploring paraptosis as a therapeutic approach in cancer treatment. J. Biomed. Sci. 2024;31(1):101. doi: 10.1186/s12929-024-01089-4
9. Wu S., Lu H., Bai Y. Nrf2 in cancers: A double-edged sword. Cancer Med. 2019;8(5):2252–2267. doi: 10.1002/cam4.2101
10. Chen F., Xiao M., Hu S., Wang M. Keap1-Nrf2 pathway: a key mechanism in the occurrence and development of cancer. Front. Oncol. 2024;14:1381467. doi: 10.3389/fonc.2024.1381467
11. Zenkov N.K., Menshchikova E.B., Kandalintseva N.V., Oleynik A.S., Prosenko A.E., Gusachenko O.N., Shklyaeva O.A., Vavilin V.A., Lyakhovich V.V. Antioxidant and antiinflammatory activity of new water-soluble sulfur-containing phenolic compounds. Biochemistry (Mosc.). 2007;72(6): 644–651.
12. Onishi H., Fukasawa A., Miatmoko A., Kawano K., Ikeuchi-Takahashi Y., Hattori Y. Preparation of chondroitin sulfate-adipic acid dihydrazide-doxorubicin conjugate and its antitumour characteristics against LLC cells. J. Drug Target. 2017;25(8):747–753. doi: 10.1080/1061186X.2017.1327593
13. Bogatyrenko T.N., Kandalintseva N.V., Sashenkova T.E., Mishchenko D.V. Sulfur-containing phenolic antioxidants increasing antitumor efficiency of cyclophosphamide and its combination with nitric oxide donor. Russ. Chem. Bull. 2018;67(4):700–704.
14. Bogatyrenko T.N., Kandalintseva N.V., Sashenkova T.E., Allayarova U.Yu., Mishchenko D.V. Hydrophilic sulfur-containing antioxidant sodium 3-(3-tert-butyl-4-hydroxyphenyl)propylthiosulfate as a modulator of the activity of antitumor cytostatics and their combinations with a NO donor. Russ. Chem. Bull. 2022;71(3):517–523. doi: 10.1007/s11172-022-3442-1
15. Raevskaya T.A., Soldatova Yu.V., Goncharova S.A., Faingold I.I. Redox-active compounds in the therapy of drug-resistant murine leukemia P388 strains. Bull. Exp. Biol. Med. 2024;177:266–270. doi: 10.1007/s10517-024-06170-4
16. Lv B., Xing S., Wang Z., Zhang A., Wang Q., Bian Y., Pei Y., Sun H., Chen Y. NRF2 inhibitors: Recent progress, future design and therapeutic potential. Eur. J. Med. Chem. 2024;279:116822. doi: 10.1016/j.ejmech.2024.116822
17. Gainutdinov P.I., Kozhin P.M., Chechushkov A.V., Martinovich G.G., Kholshin S.V., Kandalintseva N.V., Zenkov N.K., Menshchikova E.B. Inverse relationship between antioxidant activity of structurally related synthetic monophenols and their toxicity in tumor cells. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2018;38(1):22–31. [In Russian]. doi: 10.15372/SSMJ20180104
18. Menshchikova E.B., Zenkov N.K., Kozhin P.M., Chechushkov A.V., Pavlov V.S., Romakh L.P., Khrapova M.V., Serykh A.E., Kandalintseva N.V. Effect of new water-soluble phenolic antioxidants on the activity of Nrf2-driven enzymes, glutathione system, and Nrf2 translocation into the nucleus. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2020;40(6):58–69. [In Russian]. doi: 10.15372/SSMJ20200606
19. Omatsu M., Nakanishi Y., Iwane K., Aoyama N., Duran A., Muta Y., Martinez-Ordonez A., Han Q., Agatsuma N., Mizukoshi K., … Seno H. THBS1-producing tumor-infiltrating monocyte-like cells contribute to immunosuppression and metastasis in colorectal cancer. Nat. Commun. 2023;14(1):5534. doi: 10.1038/s41467-023-41095-y
20. Kristinsson S.Y., Gridley G., Hoover R.N., Check D., Landgren O. Long-term risks after splenectomy among 8,149 cancer-free American veterans: a cohort study with up to 27 years follow-up. Haematologica. 2014;99(2):392–398. doi: 10.3324/haematol.2013.092460
21. Xue J., Ye B., Sun M. Possible pathogenic mechanisms for doxorubicin-induced splenic atrophy in a human breast cancer xenograft mouse model. J. Appl. Toxicol. 2024;44(10):1606–1615. doi: 10.1002/jat.4666
22. Gezer A., Ozkaraca M., Karadag Sari E., Bedir G., Aydin P., Asker H., El-Aty A.A. Ascorbic acid mitigates doxorubicin-induced spleen injury in rats: Histopathological and immunohistochemical insights. Pak. J. Pharm. Sci. 2024;37(3):591–599.
23. Song D., Heo J.W., Kim J.S., Jung J., Jang H.H., Hwang I.G., Shim C.K., Ham J.S., Park S.Y., Lee S.H. Anti-obesity and immunomodulatory effects of Allium hookeri leaves cultivated with artificial light of different intensities on immune-depressed obese mice. Biomed. Pharmacother. 2024;179:117393. doi: 10.1016/j.biopha.2024.117393
24. Mughal K.S., Ikram M., Uddin Z., Rashid A., Rashid U., Khan M., Zehra N., Mughal U.S., Shah N., Amirzada I. Syringic acid improves cyclophosphamide-induced immunosuppression in a mouse model. Biochem. Biophys. Res. Commun. 2024;734:150777. doi: 10.1016/j.bbrc.2024.150777
25. Untch M., Mobus V., Kuhn W., Muck B.R., Thomssen C., Bauerfeind I., Harbeck N., Werner C., Lebeau A., Schneeweiss A., … Konecny G.E. Intensive dose-dense compared with conventionally scheduled preoperative chemotherapy for high-risk primary breast cancer. J. Clin. Oncol. 2009;27(18):2938–2945. doi: 10.1200/JCO.2008.20.3133
26. Aiba T., Kono Y., Etoh T., Kawano Y., Oshima Y., Inomata M. Efficacy of cooling therapy and alpha-lipoic acid derivative against chemotherapy-induced alopecia in an animal model. Cancer Sci. 2023;114(3):1007–1014. doi: 10.1111/cas.15639
27. Perez A.M., Haberland N.I., Miteva M., Wikramanayake T.C. Chemotherapy-induced alopecia by docetaxel: Prevalence, treatment and prevention. Curr. Oncol. 2024;31(9):5709–5721. doi: 10.3390/curroncol31090423
28. Fearon K.C., Glass D.J., Guttridge D.C. Cancer cachexia: mediators, signaling, and metabolic path-ways. Cell Metab. 2012;16(2):153–166. doi: 10.1016/j.cmet.2012.06.011
29. Yamada M., Warabi E., Oishi H., Lira V.A., Okutsu M. Muscle p62 stimulates the expression of antioxidant proteins alleviating cancer cachexia. FASEB J. 2023;37(9):e23156. doi: 10.1096/fj.202300349R
30. Li W., Trieu J., Blazev R., Parker B.L., Murphy K.T., Swiderski K., Lynch G.S. Sulforaphane attenuates cancer cell-induced atrophy of C2C12 myotubes. Am. J. Physiol. Cell Physiol. 2023;324(2):C205–C221. doi: 10.1152/ajpcell.00025.2022
31. Sun S., Zhai W., Zhang R., Cai N. Deletion of Dux ameliorates muscular dystrophy in mdx mice by attenuating oxidative stress via Nrf2. FASEB J. 2024;38(14):e23771. doi: 10.1096/fj.202400195R
Review
For citations:
Menshchikova E.B., Khrapova M.V., Kozhin P.M., Chechushkov A.V., Petrova E.S., Serykh A.E., Romakh L.P., Kandalintseva N.V. Original synthetic monophenolic antioxidant with combined effect inhibits tumor growth in vivo. Сибирский научный медицинский журнал. 2024;44(6):128-137. (In Russ.) https://doi.org/10.18699/SSMJ20240612