Preview

Сибирский научный медицинский журнал

Advanced search

Incidence of atrioventricular conduction disturbances and need for pacemaker implantation in patients after endovascular aortic valve replacement

https://doi.org/10.18699/SSMJ20240624

Abstract

The aim of the study was to evaluate predictors of cardiac conduction disturbance associated with increased risk of temporary and permanent pacemaker implantation after endovascular aortic valve replacement (TAVR). Material and methods. We analyzed patients who underwent surgical treatment for aortic valve replacement by endovascular treatment in Krasnoyarsk Regional Clinical Hospital from January 2018 to May 2023. The total number of people included in the study is 157. Results and discussion. The association between the occurrence of atrioventricular block of II–III degree, left bundle branch block and atrial fibrillation after TAVR implantation, which required temporary pacemaker implantation and permanent pacemaker implantation, was revealed. Atrioventricular block of grade II-III was first detected in 11 (13.3 %) patients after TAVR, left bundle branch block – in 22 (26.5 %) and atrial fibrillation – in 11 (13.3 %). The need for temporary pacing during TAVR was necessary in 35 (23.6 %) patients. 34 (23.0 %) patients had a temporary pacemaker placed within the first 2 days after surgical intervention and 1 patient (0.7 %) after 3 days. Regression analysis revealed 6 significant risk factors for temporary pacemaker implantation: left bundle branch block (p = 0.002), atrial fibrillation (p = 0.030), 1st degree atrioventricular block (p = 0.032), age (p = 0.012), female gender (p = 0.033) and history of acute myocardial infarction (p = 0.024). Permanent pacemaker implantation was performed in 7 (4.5 %) patients in the period from 4 to 20 days, including 6 (85.7 %) patients due to complete atrioventricular block and 1 (14.3 %) patient due to sinus node dysfunction. Permanent pacemaker was implanted to five (3.2 %) patients in the period from 6 months to 3.6 years, including 3 (1.9 %) patients due to complete atrioventricular block and 2 (1.3 %) patients due to sinus node dysfunction. Regression analysis revealed 2 significant risk factors for permanent pacemaker implantation: presence of atrial fibrillation before surgical intervention (p = 0.002; r = 0.160) and presence of left bundle branch block before TAVR (p = 0.037; r = 0.108). Conclusions. Identification of predictors of atrioventricular block of II–III degrees after TAVR will facilitate timely temporary pacing and permanent pacemaker implantation to prevent complications due to bradyarrhythmias.

About the Authors

Yu. Yu. Stolbikov
Krasnoyarsk Clinical Regional Hospital
Russian Federation

Yuri Yu. Stolbikov.

660022, Krasnoyarsk, Partizana Zheleznyaka st.,3a



G. V. Matyushin
Krasnoyarsk Clinical Regional Hospital; Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia
Russian Federation

Gennady V. Matyushin - doctor of medical sciences, professor.

660022, Krasnoyarsk, Partizana Zheleznyaka st.,3a; 660022, Krasnoyarsk, Partizana Zheleznyaka st., 1



A. V. Protopopov
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia
Russian Federation

Alexey V. Protopopov - doctor of medical sciences, professor.

660022, Krasnoyarsk, Partizana Zheleznyaka st., 1



E. V. Samokhvalov
Krasnoyarsk Clinical Regional Hospital
Russian Federation

Evgeny V. Samokhvalov.

660022, Krasnoyarsk, Partizana Zheleznyaka st.,3a



O. P. Ishchenko
Krasnoyarsk Clinical Regional Hospital; Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia
Russian Federation

Olga P. Ishchenko.

660022, Krasnoyarsk, Partizana Zheleznyaka st.,3a; 660022, Krasnoyarsk, Partizana Zheleznyaka st., 1



V. O. Kobanenko
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia
Russian Federation

Vladislav O. Kobanenko.

660022, Krasnoyarsk, Partizana Zheleznyaka st., 1



References

1. Chetrit M., Khan M.A., Kapadia S. State of the art management of aortic valve disease in ankylosing spondylitis. Curr. Rheumatol. Rep. 2020;22(6):23. doi: 10.1007/s11926-020-00898-4

2. Lindman B.R., Sukul D., Dweck M.R., Madhavan M.V., Arsenault B.J., Coylewright M., Merryman W.D., Newby D.E., Lewis J., Harrell F.E. Jr., Mack M.J., Leon M.B., Otto C.M., Pibarot P. Evaluating medical therapy for calcific aortic stenosis: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021;78(23):2354–2376. doi: 10.1016/j.jacc.2021.09.1367

3. Rajput F.A., Zeltser R. Aortic valve replacement. In: StatPearls [Internet]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK537136/

4. Protopopov A.V., Ganjukov V.I., Tarasov R.S. Transcatheter interventions in pathology of heart valves. Krasnoyarsk: Verso, 2021. 528 p. [In Russian].

5. Lee H.J., Kim H.K. Natural history data in symptomatic severe aortic stenosis alerts cardiologists to the dangers of No action. Korean Circ. J. 2019;49(2):170–172. doi: 10.4070/kcj.2018.0344

6. Michalski B., Dweck M.R., Marsan N.A., Cameli M., d’Andrea A., Carvalho R.F., Holte E., Podlesnikar T., Manka R., Haugaa K.H. The evaluation of aortic stenosis, how the new guidelines are implemented across Europe: a survey by EACVI. Eur. Heart J. Cardiovasc. Imaging. 2020;21(4):357–362. doi: 10.1093/ehjci/jeaa009

7. Swift S.L., Puehler T., Misso K., Lang S.H., Forbes C., Kleijnen J., Danner M., Kuhn C., Haneya A., Seoudy H., Cremer J., Frey N., Lutter G., Wolff R., Scheibler F., Wehkamp K., Frank D. Transcatheter aortic valve implantation versus surgical aortic valve replacement in patients with severe aortic stenosis: a systematic review and meta-analysis. BMJ Open. 2021;11(12):e054222. doi: 10.1136/bmjopen-2021-054222

8. ProtopopovA.V., Kochkina K.V., Mashtakova O.B., Druzhinina S.M., Pustovojtov A.V., Fedchenko Ya.O., Bigashev R.B., Linev K.A., Usik G.A., Ustjugov S.A., Myznikov A.V., Malyshkin D.A. Transcatheter aortic valve replacement in young patients. Diagnosticheskaya i interventsionnaya radiologiya = Diagnostic and Interventional Radiology. 2014; 8(1):47–53. [In Russian].

9. Malik A.H., Zaid S., Ahmad H., Goldberg J., Dutta T., Undemir C., Cohen M., Aronow W.S., Lansman S.L. A meta-analysis of 1-year outcomes of transcatheter versus surgical aortic valve replacement in low-risk patients with severe aortic stenosis. J. Geriatr. Cardiol. 2020;17(1):43–50. doi: 10.11909/j.issn.1671-5411.2020.01.005

10. Judson G.L., Agrawal H., Mahadevan V.S. Conduction system abnormalities after transcatheter aortic valve replacement: mechanism, prediction, and management. Interv. Cardiol. Clin. 2019;8(4):403–409. doi: 10.1016/j.iccl.2019.06.003

11. MacCarthy P., Zaman A., Uren N., Cockburn J., Dorman S., Malik I., Muir D., Ozkor M.M., Smith D., Shield S. Minimising permanent pacemaker implantation (PPI) after TAVI. Br. J. Cardiol. 2021;28(2):20. doi: 10.5837/bjc.2021.020

12. Hayashidani S., Shiose A., Tsutsui H. New-on-set left bundle branch block after transcatheter aortic valve implantation – not a harmless bystander. Circ. J. 2020;84(6):888–890. doi: 10.1253/circj.CJ-20-0292

13. Knecht S., Schaer B., Reichlin T., Spies F., Madaffari A., Vischer A., Fahrni G., Jeger R., Kaiser C., Osswald S., Sticherling C., Kühne M. Electrophysiology testing to stratify patients with left bundle branch block after transcatheter aortic valve implantation. J. Am. Heart Assoc. 2020;9(5):e014446. doi: 10.1161/JAHA.119.014446

14. Wang T., Ou A., Xia P., Tian J., Wang H., Cheng Z. Predictors for the risk of permanent pacemaker implantation after transcatheter aortic valve replacement: A systematic review and meta-analysis. J. Card. Surg. 2022;37(2):377–405. doi: 10.1111/jocs.16129

15. Tsoi M., Tandon K., Zimetbaum P.J., Frishman W.H. Conduction disturbances and permanent pacemaker implantation after transcatheter aortic valve replacement: predictors and prevention. Cardiol. Rev. 2022;30(4):179–187. doi: 10.1097/CRD.0000000000000398

16. Leong D., Sovari A.A., Ehdaie A., Chakravarty T., Liu Q., Jilaihawi H., Makkar R., Wang X., Cingolani E., Shehata M. Permanent-temporary pacemakers in the management of patients with conduction abnormalities after transcatheter aortic valve replacement. J. Interv. Card. Electrophysiol. 2018;52(1):111–116. doi: 10.1007/s10840-018-0345-z

17. Chang S.S., Liu X.M., Lu Z.N., Yao J., Yin C.Q., Wu W.H., Yuan F., Luo T.Y., Jiang Z.M., Song G.Y. Feasibility study of using bridging temporary permanent pacemaker in patients with high-degree atrioventricular block after TAVR. Zhonghua Xin Xue Guan Bing Za Zhi. 2023;51(6):648–655. doi: 10.3760/cma.j.cn112148-20221116-00898

18. Sammour Y., Krishnaswamy A., Kumar A., Puri R., Tarakji K.G., Bazarbashi N., Harb S., Griffin B., Svensson L., Wazni O., Kapadia S.R. Incidence, predictors, and implications of permanent pacemaker requirement after transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 2021;14(2):115–134. doi: 10.1016/j.jcin.2020.09.063

19. Mahajan S., Gupta R., Malik A.H., Mahajan P., Aedma S.K.,AronowW.S., Mehta S.S., Lakkireddy D.R. Predictors of permanent pacemaker insertion after TAVR: A systematic review and updated meta-analysis. J. Cardiovasc. Electrophysiol. 2021;32(5):1411–1420. doi: 10.1111/jce.14986


Review

For citations:


Stolbikov Yu.Yu., Matyushin G.V., Protopopov A.V., Samokhvalov E.V., Ishchenko O.P., Kobanenko V.O. Incidence of atrioventricular conduction disturbances and need for pacemaker implantation in patients after endovascular aortic valve replacement. Сибирский научный медицинский журнал. 2024;44(6):225-230. (In Russ.) https://doi.org/10.18699/SSMJ20240624

Views: 657


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)