Preview

Сибирский научный медицинский журнал

Advanced search

Mathematical model of the dependence between cerebral ventricular size and capillary pressure in laboratory animals

https://doi.org/10.18699/SSMJ20240112

Abstract

Aim: To adapt a mathematical model describing the interaction between fluid media and brain matter for the purpose of definition of the dependence between brain ventricle size and capillary pressure in laboratory animals of two genotypes, BALB/c and C57BL/6. Material and methods. The study included 4 male mice of each inbred strain C57BL/6 and BALB/c at the age of 12 weeks. The brain and cerebrospinal fluid system images were obtained using an 11.7 T horizontal MR scanner (Bruker, BioSpec 117/16 USR, Germany). An axial section at the level of -0.5 mm from bregma was chosen as the geometry for mathematical modelling. To describe the data obtained, the mathematical model was adapted by selecting a scale factor based on the known values of the cerebrospinal fluid formation rate for humans and mice. Results and discussion. The same qualitative pattern of relationship between capillary pressure and mean ventricular wall displacement was observed for all animals considered. Although the selected genetic strains of BALB/c and C57Bl mice differ significantly in terms of cerebral ventricle size, these differences in animal genotype did not affect the nature of this relationship. Changing the parameters of the fluid media interaction in the area of compression or moderate ventricular dilation almost does not lead to an exit from the physiologically acceptable capillary pressure value. In this case, the size of the ventricles changes significantly. In the area of large ventricular dilation, in contrast, there is little change in ventricular size, and this is accompanied by a dramatic increase in capillary pressure far beyond physiologic limits. Thus, the change in ventricular size is an adaptive process associated with pressure fluctuations caused by changes in intracranial fluid flow. The mere fact that some of the values reach the zone of physiologically unacceptable pressures associated, in fact, with death, provided that there is practically no change in ventricular size indicates that such a situation is rarely realized and is possible in case of violation of intracranial fluid media flows associated with the fact that the increase in ventricular size limits adaptive capabilities. Conclusions. The presented animal model will further increase the understanding of the pattern we have established and allow us to move on to attempts at prediction.

About the Authors

A. A. Cherevko
Lavrentyev Institute of Hydrodynamics of SB RAS
Russian Federation

Alexander A. Cherevko, candidate of physical and mathematical sciences 

630090, Novosibirsk, Academika Lavrentieva ave., 15



G. S. Valova
Lavrentyev Institute of Hydrodynamics of SB RAS
Russian Federation

Galina S. Valova, candidate of physical and mathematical sciences 

630090, Novosibirsk, Academika Lavrentieva ave., 15



D. V. Petrovsky
Lavrentyev Institute of Hydrodynamics of SB RAS; Federal Research Center Institute of Cytology and Genetics of SB RAS
Russian Federation

Dmitry V. Petrovsky, candidate of biological sciences 

630090, Novosibirsk, Academika Lavrentieva ave., 15;
630090, Novosibirsk, Aсademika Lavrentieva ave., 10



A. E. Akulov
Lavrentyev Institute of Hydrodynamics of SB RAS; Federal Research Center Institute of Cytology and Genetics of SB RAS; International Tomography Center of SB RAS
Russian Federation

Andrey E. Akulov, candidate of biological sciences 

630090, Novosibirsk, Academika Lavrentieva ave., 15;
630090, Novosibirsk, Aсademika Lavrentieva ave., 10;
630090, Novosibirsk, Institutskаya st., 3a



References

1. World Health Organization. World health statistics 2022: monitoring health for the SDGs, sustainable development goals. Available at: https://www.who.int/publications/i/item/9789240051157

2. Zhou X., Xia J. Application of Evans index in normal pressure hydrocephalus patients: a mini review. Front. Aging. Neurosci. 2022;13:783092. doi: 10.3389/fnagi.2021.783092

3. He W., Fang X., Wang X., Gao P., Gao X., Zhou X., Mao R., Hu J., Hua Y., Xia J. A new index for assessing cerebral ventricular volume in idiopathic normal-pressure hydrocephalus: a comparison with Evans’ index. Neuroradiology. 2020;62(6):661–667. doi: 10.1007/s00234-020-02361-8

4. Linninger A.A., Xenos M., Sweetman B., Ponkshe S., Guo X., Penn R. A mathematical model of blood, cerebrospinal fluid and brain dynamics. J. Math. Biol. 2009;59(6):729–759. doi: 10.1007/s00285-009-0250-2

5. Ficola A., Fravolini M.L., Anile C. A physical model of the intracranial system for the study of the mechanisms of the cerebral blood flow autoregulation. IEEE Access. 2018;6:67166–67175.

6. Doron O., Zadka Y., Barnea O., Rosenthal G. Interactions of brain, blood, and CSF: a novel mathematical model of cerebral edema. Fluids Barriers CNS. 2021;18(1):1–14. doi: 10.1186/s12987-021-00274-z

7. Baghbani R. An electrical model of hydrocephalus shunt incorporating the CSF dynamics. Scientific Reports. 2019;9(1):1–12. doi: 10.1038/s41598-019-46328-z

8. Ryu J., Hu X., Shadden S.C. A coupled lumpedparameter and distributed network model for cerebral pulse-wave hemodynamics. J. Biomech. Eng. 2015;137(10):1–13. doi: 10.1115/1.4031331

9. Clarke E.C., Fletcher D.F., Stoodley M.A., Bilston L.E. Computational fluid dynamics modelling of cerebrospinal fluid pressure in Chiari malformation and syringomyelia. J. Biomech. 2013; 46(11):1801–1809. doi: 10.1016/j.jbiomech.2013.05.013

10. Gholampour S., Fatouraee N., Seddighi A.S., Seddighi A. Numerical simulation of cerebrospinal fluid hydrodynamics in the healing process of hydrocephalus patients. Journal of Applied Mechanics and Technical Physics. 2017;58(3):386–391. doi: 10.1134/S0021894417030026

11. Khani M., Sass L.R., Xing T., Sharp M.K., Balédent O., Bryn A.M. Anthropomorphic model of intrathecal cerebrospinal fluid dynamics within the spinal subarachnoid space: spinal cord nerve roots increase steady-streaming. J. Biomech. Eng. 2018;140(8):081012. doi: 10.1115/1.4040401

12. Gholampour S. FSI simulation of CSF hydrodynamic changes in a large population of non-communicating hydrocephalus patients during treatment process with regard to their clinical symptoms. PLoS One. 2018;13(4):e0196216. doi: 10.1371/journal.pone.0196216

13. Penn R.D., Basati S., Sweetman B., Guo X., Linninger A. Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J. Neurosurg. 2011;115(1):159–164. doi: 10.3171/2010.12.JNS10926

14. Nagashima T., Tamaki N., Matsumoto S., Horwitz B., Seguchi Y. Biomechanics of hydrocephalus: a new theoretical model. Neurosurgery. 1987;21(6):898–904. doi: 10.1227/00006123-198712000-00019

15. Tully B., Ventikos Y. Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. J. Fluid Mech. 2011;667:188–215. doi: 10.1017/S0022112010004428

16. Vardakis J.C., Tully B.J., Ventikos Y. Multicompartmental poroelasticity as a platform for the integrative modeling of water transport in the brain. In: Computer models in biomechanics. Springer, 2013; 305–316.

17. Chou D., Vardakis J.C., Guo L., Tully B., Ventikos Y. A fully dynamic multi-compartmental poroelastic system: Application to aqueductal stenosis. J. Biomech. 2016;49(11):2306–2312. doi: 10.1016/j.jbiomech.2015.11.025

18. Guo L., Vardakis J.C., Lassila T., Mitolo M., Ravikumar N., Chou D., Lange M., Sarrami-Foroushani A., Tully B.J., Taylor Z.A., … Ventikos Y. Subjectspecific multi-poroelastic model for exploring the risk factors associated with the early stages of Alzheimer’s disease. Interface focus. 2018;8(1):20170019. doi: 10.1098/rsfs.2017.0019

19. Vardakis J.C., Guo L., Peach T.W., Lassila T., Mitolo M., Chou D., Taylor Z.A., Varma S., Venneri A., Frangi A.F., Ventikos Y. Fluid–structure interaction for highly complex, statistically defined, biological media: Homogenisation and a 3D multicompartmental poroelastic model for brain biomechanics. J. Fluids Struct. 2019;91:102641. doi: 10.1016/j.jfluidstructs.2019.04.008

20. Ye W., Chen Q. Potential applications and perspectives of humanized mouse models. Annu. Rev. Anim. Biosci. 2022;10:395–417. doi: 10.1146/annurevanimal-020420-033029

21. Ma Y., Hof P.R., Grant S.C., Blackband S.J., Bennett R., Slatest L., McGuigan M.D., Benveniste H. A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience. 2005;135(4):1203–1215. doi: 10.1016/j.neuroscience.2005.07.014

22. Masoumi N., Framanzad F., Zamanian B., Seddighi A.S., Moosavi M.H., Najarian S., Bastani D. 2D computational fluid dynamic modeling of human ventricle system based on fluid-solid interaction and pulsatile flow. Basic and Clinical Neuroscience. 2013;4(1):64–75.

23. Petrov I.B. Solution of deformable solid mechanics dynamical problems with use of mathematical modeling by grid-characteristic method. In: Continuum mechanics, applied mathematics and scientific computing: Godunov’s legacy. Springer, 2020; 299–305.

24. Cheng S., Jacobson E., Bilston L.E. Models of the pulsatile hydrodynamics of cerebrospinal fluid flow in the normal and abnormal intracranial system. Comput. Methods. Biomech. Biomed. Eng. Imaging. Vis. 2007;10(2):151–157. doi: 10.1080/10255840601124753

25. Valova G., Bogomyakova O., Tulupov A., Cherevko A. Influence of interaction of cerebral fluids on ventricular deformation: A mathematical approach. PLoS One. 2020;17(2):e0264395. doi: 10.1371/journal.pone.0264395

26. Vinje V., Eklund A., Mardal K.A., Rognes M.E., Støverud K.H. Intracranial pressure elevation alters CSF clearance pathways. Fluids and Barriers of the CNS. 2020;17(1):29. doi: 10.1186/s12987-020-00189-1


Review

For citations:


Cherevko A.A., Valova G.S., Petrovsky D.V., Akulov A.E. Mathematical model of the dependence between cerebral ventricular size and capillary pressure in laboratory animals. Сибирский научный медицинский журнал. 2024;44(1):116-123. (In Russ.) https://doi.org/10.18699/SSMJ20240112

Views: 425


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)