Preview

Сибирский научный медицинский журнал

Advanced search

Application of a computer vision algorithm to identify foci of demyelination in multiple sclerosis on MRI images

https://doi.org/10.18699/SSMJ20240111

Abstract

The research was aimed at analyzing modern algorithms for diagnosing lesions in multiple sclerosis on MRI images. Multiple sclerosis is a severe disease of the central nervous system and ranks first among the causes of disability in patients of young working age. In connection with the development of computer vision and machine learning technologies, the relevance of using these technologies for medical diagnostics is growing. Such approaches are necessary for the effective development and implementation of diagnostic systems using artificial intelligence. Modern algorithms and models for lesion segmentation were selected and implemented. Material and methods. The paper presents CV features of diagnosing multiple sclerosis on MRI images, existing data sets: ISBI-2015, MSSEG-2016, MSSEG-2021; existing algorithms and models for lesion segmentation: U-Net, nnU-Net, TransUnet, TransBTS, UNETR, Swin UNETR. Results and discussion. The architectures and models of nnU-Net, UNETR, Swin UNETR were trained and compared at ISBI2015 with various parameters and loss functions. Four MRI sequences were used: T2-WI, T2-FLAIR, PD, MPRAGE. Lesion segmentation was approved by certified experienced neuroradiologists. Conclusions. The approaches described in the paper including data processing, model training, and results analysis, focused on the selection and development of high-quality computer vision algorithms for identifying multiple sclerosis lesions in MRI images. Identification and segmentation of demyelination foci is a necessary step for diagnosing the disease, as well as for calculating and interpreting more meaningful indicators of disease severity and progression.

About the Authors

B. N. Tuchinov
Novosibirsk State University; International Tomography Center of SB RAS
Russian Federation

Bair N. Tuchinov 

630090, Novosibirsk, Pirogova st., 1;
630090, Novosibirsk, Institutskaya st., 3a



V. Suvorov
Novosibirsk State University; International Tomography Center of SB RAS
Russian Federation

Victor Suvorov 

630090, Novosibirsk, Pirogova st., 1;
630090, Novosibirsk, Institutskaya st., 3a



K. O. Motorin
Novosibirsk State University
Russian Federation

Kirill O. Motorin 

630090, Novosibirsk, Pirogova st., 1



E. N. Pavlovsky
Novosibirsk State University; International Tomography Center of SB RAS
Russian Federation

Evgeny N. Pavlovskiy, candidate of physical and mathematical sciences 

630090, Novosibirsk, Pirogova st., 1;
630090, Novosibirsk, Institutskaya st., 3a



L. M. Vasilkiv
Novosibirsk State University; International Tomography Center of SB RAS
Russian Federation

Liubov M. Vasilkiv, candidate of medical sciences 

630090, Novosibirsk, Pirogova st., 1;
630090, Novosibirsk, Institutskaya st., 3a



Yu. A. Stankevich
Novosibirsk State University; International Tomography Center of SB RAS
Russian Federation

Yuliya A. Stankevich, candidate of medical sciences 

630090, Novosibirsk, Pirogova st., 1;
630090, Novosibirsk, Institutskaya st., 3a



A. A. Tulupov
Novosibirsk State University; International Tomography Center of SB RAS
Russian Federation

Andrey A. Tulupov, doctor of medical sciences, professor, corresponding member of the RAS 

630090, Novosibirsk, Pirogova st., 1;
630090, Novosibirsk, Institutskaya st., 3a



References

1. Krotenkova I.A., Bryukhov V.V., Konovalov R.N., Zakharova M.N., Krotenkova M.V. Magnetic resonance imaging in the differential diagnosis of multiple sclerosis and other demyelinating diseases. Vestnik rentgenologii i radiologii = Bulletin of Roentgenology and Radiology. 2019;100(4):229–236. [In Russian]. doi: 10.20862/0042-4676-2019-100-4-229-236

2. Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M.S., … Cohen J.A. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–173. doi: 10.1016/S1474-4422(17)30470-2

3. Zeng C., Gu L., Liu Z., Zhao S. Review of deep learning approaches for the segmentation of multiple sclerosis lesions on brain MRI. Front. Neuroinform. 2020;14:610967. doi: 10.3389/fninf.2020.610967

4. Carass A., Roy S., Jog A., Cuzzocreo J.L., Magrath E., Gherman A., Button J., Nguyen J., Prados F., Sudre C.H., ... Pham D.L. Longitudinal multiple sclerosis lesion segmentation: resource and challenge. Neuroimage. 2017;148:77–102. doi: 10.1016/j.neuroimage.2016.12.064

5. Commowick O., Istace A., Kain M., Laurent B., Leray F., Simon M., Pop S.C., Girard P., Améli R., Ferré J.C., ... Barillot C. Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure. Sci. Rep. 2018;8(1):13650. doi: 10.1038/s41598-018-31911-7

6. Commowick O., Cervenansky F., Cotton F., Dojat M. MSSEG-2 challenge proceedings: Multiple sclerosis new lesions segmentation challenge using a data management and processing infrastructure. 24th International Conference on Medical Image Computing and Computer Assisted Intervention: proc. conf., Strasbourg, France, Sep 2021. P. 1–118.

7. Ronneberger O., Fischer P., Brox T. U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: proc. conf., Munich, Germany, October 5–9, 2015. Part III 18. Springer International Publishing, 2015. doi: 10.48550/arXiv.1505.04597

8. Zhang H., Valcarcel A.M., Bakshi R., Chu R., Bagnato F., Shinohara R.T., Hett K., Oguz I. Multiple sclerosis lesion segmentation with tiramisu and 2.5D stacked slices. Med. Image Comput. Comput. Assist. Interv. 2019;11766:338–346. doi: 10.1007/978-3-030-32248-9_38

9. Isensee F., Jaeger P.F., Kohl S.A., Petersen J., Maier-Hein K.H. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods. 2021;18(2):203–211. doi: 10.1038/s41592-020-01008-z

10. Dosovitskiy A., Beyer L., Kolesnikov A., Weissenborn D., Zhai X., Unterthiner T., Dehghani M., Minderer M., Heigold G., Gelly S., Uszkoreit J., Houlsby N. (2020). An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint arXiv. 2010.11929.

11. Hatamizadeh A., Tang Y., Nath V., Yang D., Myronenko A., Landman B., Roth H., Xu D. UNETR: Transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2022. P. 574–584

12. Hatamizadeh A., Nath V., Tang Y., Yang D., Roth H.R., Xu D. Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images. In: International MICCAI Brainlesion Workshop. Cham: Springer International Publishing, 2021. P. 272–284. doi: 10.48550/arXiv.2201.01266

13. Lin T.Y., Goyal P., Girshick R., He K., Dollár P. Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision. 2017. P. 2980–2988. doi:10.1109/ICCV.2017.324


Review

Views: 558


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)