Effect of nitric oxide modulators on cerebrospinal fluid outflow through the cribriform plate of C57Bl/6 mice
https://doi.org/10.18699/SSMJ20240106
Abstract
Introduction. Beside the excretion of metabolic wastes, the lymphatic system in CNS play a crucial role in the regulation of intracranial pressure that is vital for the organism. One of the possible pathways of cerebrospinal fluid (CSF) drainage is its flow through the foramen of the cribriform plate (CP) into the nasal cavity. Despite the significant contribution of the nasal tract to the overall dynamics of the liquor, not much is known about the mechanisms of this process and how it is regulated. Due to its influence on the tone of blood vessels and peristalsis of lymphatic vessels, nitric oxide (NO) is a powerful modulator of liquor outflow, but its effects on nasal CSF outflow have not been studied yet. Aim and Methods. Using diffusion-weighted magnetic resonance imaging (DW MRI), we characterized the changes in CSF outflow through the CP of C57Bl/6 mice influenced by intranasal application of NO synthesis modulators. Results. In our study, using DW MRI and computer tomography (CT) mapping of the CP, we detected significant CSF outflow through its large dorsal and ventral foramen located along the nasal septum. At the same time, the CSF flow rate through the dorsal orifices of the CP was the highest. In addition, we showed that intranasal introduction of NO donor after 30 min leads to a significant decrease of water diffusion through the CP whereas application of a nonspecific NO synthase inhibitor into the nasal cavity enhances nasal outflow. The effects of the NO modulators did not have any significant spatial patterns; CSF outflow was significantly altered across all CP orifices regardless of their size or localization. Conclusion. The obtained results demonstrate the potential possibility of noninvasive local regulation of liquor dynamics, which may be used in the development of new approaches to the therapy of intracranial hypertension of various etiologies and methods of CNS detoxification.
About the Authors
D. V. PetrovskyRussian Federation
Dmitrii V. Petrovsky, candidate of biological sciences
630090, Novosibirsk, Academika Lavrentieva ave., 10;
630090, Novosibirsk, Aсademika Lavrentieva ave., 15
V. A. Kim
Russian Federation
Vladimir A. Kim
630090, Novosibirsk, Academika Lavrentieva ave., 10
M. B. Sharapova
Russian Federation
Marina B. Sharapova
630090, Novosibirsk, Academika Lavrentieva ave., 10
D. S. Zuev
Russian Federation
Daniil S. Zuev
630090, Novosibirsk, Academika Lavrentieva ave., 10
A. Zh. Ibrayeva
Russian Federation
Azhar Zh. Ibrayeva
630090, Novosibirsk, Academika Lavrentieva ave., 10
E. K. Silvanovich
Russian Federation
Elizaveta K. Silvanovich
630090, Novosibirsk, Academika Lavrentieva ave., 10
M. P. Moshkin
Russian Federation
Mikhail P. Moshkin, doctor of biological sciences, professor
630090, Novosibirsk, Academika Lavrentieva ave., 10
A. V. Romashchenko
Russian Federation
Aleksandr V. Romashchenko, candidate of biological sciences
630090, Novosibirsk, Academika Lavrentieva ave., 10;
630090, Novosibirsk, Academika Lavrentieva ave., 6;
630090, Novosibirsk, Institutskaya st., 3a
References
1. Hablitz L. M., Nedergaard M. The glymphatic system: a novel component of fundamental neurobiology. J. Neurosci. 2021;41(37):7698–7711. doi: 10.1523/ JNEUROSCI.0619-21.2021
2. Nedergaard M., Goldman S.A. Brain drain. Sci. Am. 2016;314(3):44–49. doi: 10.1038/SCIENTIFICAMERICAN0316-44
3. Poca M.A., Sahuquillo J. Short-term medical management of hydrocephalus. Expert. Opin. Pharmacother. 2005;6(9):1525–1538. doi: 10.1517/14656566.6.9.1525
4. Rangel-Castillo L., Gopinath S., Robertson C.S. Management of intracranial hypertension. Neurol. Clin. 2008;26(2):521–541. doi: 10.1016/J.NCL.2008.02.003
5. Proulx S.T. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell. Mol. Life Sci. 2021;78(60):2429–2457. doi: 10.1007/S00018-020-03706-5
6. Spera I., Cousin N., Ries M., Kedracka A., Castillo A., Aleandri S., Vladymyrov M., Mapunda J.A., Engelhardt B., Luciani P., Detmar M., Proulx S.T. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves. EBioMedicine. 2023;91:104558. doi: 10.1016/j.ebiom.2023.104558
7. Norwood J.N., Zhang Q., Card D., Craine A., Ryan T.M., Drew P.J. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. Elife. 2019; 8:e44278. doi: 10.7554/ELIFE.44278
8. Silver I., Kim C., Mollanji R., Johnston M. Cerebrospinal fluid outflow resistance in sheep: impact of blocking cerebrospinal fluid transport through the cribriform plate. Neuropathol. Appl. Neurobiol. 2002;28(1):67–74. doi: 10.1046/J.1365-2990.2002.00373.X
9. Chen L., Liu P., Gao H., Sun B., Chao D., Wang F., Zhu Y., Hedenstierna G., Wang C.G. Inhalation of nitric oxide in the treatment of severe acute respiratory syndrome: a rescue trial in Beijing. Clin. Infect. Dis. 2004;39(10):1531–1535. doi: 10.1086/42535
10. Djupesland P.G., Chatkin J.M., Qian W., Haight J.S. Nitric oxide in the nasal airway: a new dimension in otorhinolaryngology. Am. J. Otolaryngol. 2001;22(1):19–32. doi: 10.1053/AJOT.2001.20700
11. Ghaffari A., Miller C., McMullin B., Ghahary A. Potential application of gaseous nitric oxide as a topical antimicrobial agent. Nitric oxide. 2006;14(1):21–29. doi: 10.1016/J.NIOX.2005.08.003
12. Scallan J.P., Hill M.A., Davis M.J. Lymphatic vascular integrity is disrupted in type 2 diabetes due to impaired nitric oxide signalling. Cardiovasc. Res. 2015;107(1):89–97. doi: 10.1093/CVR/CVV117
13. Martel J., Ko Y.F., Young J. D., Ojcius D.M. Could nasal nitric oxide help to mitigate the severity of COVID-19? Microbes Infect. 2020;22(4-5):168–171. doi: 10.1016/j.micinf.2020.05.002
14. Romashchenko A.V., Kireeva P.E., Sharapova M.B., Zapara Т.А., Ratushnyak A.S. Learning-induced sensory plasticity of mouse olfactory epithelium. Vavilovskiy zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(8):1070–1077. [In Russian]. doi: 10.18699/VJ18.452
15. Romashchenko A., Petrovsky D., Moshkin M.P. Congruence of intranasal aerodynamics and functional heterogeneity of olfactory epithelium. Biology Bulletin Reviews. 2018;8:23–31. doi: 10.1134/S207908641801005X
16. Romashchenko A.V., Sharapova M.B., Petrovskii D.V., Moshkin М.P. Olfactory transport efficiency of the manganese oxide nanoparticles (II) after their single or multiple intranasal administrations. Vavilovskiy zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(3):304–311. [In Russian]. doi: 10.18699/VJ17.248
17. Zavjalov E.L., Razumov I.A., Gerlinskaya L.A., Romashchenko A.V. In vivo MRI visualization of growth and morphology in the orthotopic xenotrasplantation U87 glioblastoma mouse SCI D model. Vavilovskiy zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(4):460–465. [In Russian]. doi: 10.18699/J15.061
18. Alshuhri M.S., Gallagher L., McCabe C., Holmes W.M. Change in CSF dynamics responsible for ICP elevation after ischemic stroke in rats: a new mechanism for unexplained END? Transl. Stroke Res. 2020;11(2):310–318. doi: 10.1007/S12975-019-00719-6
19. Sakka L., Coll G., Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2011;128(6):309–316. doi: 10.1016/J.ANORL.2011.03.002
20. Yang G.C., Scherer P.W., Zhao K., Mozell M.M. Numerical modeling of odorant uptake in the rat nasal cavity. Chem. Senses. 2007;32(3):273–284. doi: 10.1093/CHEMSE/BJL056
21. Ohhashi T., Yokoyama S. Nitric oxide and the lymphatic system. Jpn. J. Physiol. 1994;44(4):327–342. doi: 10.2170/JJPHYSIOL.44.327
22. Zhao Y., Vanhoutte P.M., Leung S.W. Vascular nitric oxide: Beyond eNOS. J. Pharmacol. Sci. 2015;129(2):83–94. doi: 10.1016/J.JPHS.2015.09.002
23. Kasprowicz M., Lalou D.A., Czosnyka M., Garnett M., Czosnyka Z. Intracranial pressure, its components and cerebrospinal fluid pressure–volume compensation. Acta Neurol. Scand. 2016;134(3):168–180. doi: 10.1111/ANE.12541
24. Challis R.C., Tian H., Wang J., He J., Jiang J., Chen X., Yin W., Connelly T., Ma L., Yu C.R., … Ma M. An olfactory cilia pattern in the mammalian nose ensures high sensitivity to odors. Curr. Biol. 2015;25(19):2503–2512. doi: 10.1016/J.CUB.2015.07.065
25. Kimbell J., Godo M., Gross E., Joyner D., Richardson R., Morgan K. Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages. Toxicol. Appl. Pharmacol. 1997;145(2):388–398. doi: 10.1006/TAAP.1997.8206
26. Dhuria S.V., Hanson L.R., Frey W.H. 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J. Pharm. Sci. 2010;99(4):1654–1673. doi: 10.1002/JPS.21924
27. Martinez J., Duma R., Nelson E., Moretta F. Experimental naegleria meningoencephalitis in mice. Penetration of the olfactory mucosal epithelium by Naegleria and pathologic changes produced: a light and electron microscope study. Lab. Invest. 1973;29(2):121–133.
28. Schwager S., Detmar M. Inflammation and lymphatic function. Front. Immunol. 2019;10:308. doi: 10.3389/FIMMU.2019.00308
29. Carlström M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat. Rev. Nephrol. 2021;17(9):575–590. doi: 10.1038/s41581-021-00429-z
30. Perez-Rojas J.M., Kassem K.M., Beierwaltes W.H., Garvin J.L., Herrera M. Nitric oxide produced by endothelial nitric oxide synthase promotes diuresis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010;298(4):R1050–R1055. doi: 10.1152/AJPREGU.00181.2009
Review
For citations:
Petrovsky D.V., Kim V.A., Sharapova M.B., Zuev D.S., Ibrayeva A.Zh., Silvanovich E.K., Moshkin M.P., Romashchenko A.V. Effect of nitric oxide modulators on cerebrospinal fluid outflow through the cribriform plate of C57Bl/6 mice. Сибирский научный медицинский журнал. 2024;44(1):52-60. (In Russ.) https://doi.org/10.18699/SSMJ20240106