Preview

Сибирский научный медицинский журнал

Advanced search

Multiple sclerosis: modern diagnostic markers and prognostic factors of disease progression

https://doi.org/10.18699/SSMJ20240105

Abstract

Multiple sclerosis (MS) is one of the most common causes of disability in young people of working age. The prevalence of this disease has increased significantly in recent years and today amounts to more than 2 900 000 people worldwide. The transition from relapsing-remitting MS to secondary progressive MS is observed in 25 % of cases within 10 years the disease duration, and with further time the proportion of patients with secondary progressive MS increases. Despite the importance of preventing patient disability, today the diagnosis of secondary progressive MS is established retrospectively, which makes the issue of identifying early markers of disease progression extremely relevant. The most promising diagnostic markers allow the differentiation of progressive MS with a sensitivity of up to 87 % and a specificity of up to 90 %. This review will consider the most promising clinical, instrumental and biological signs of early progression of MS.

About the Authors

A. I. Prokaeva
Novosibirsk State Medical University of Minzdrav of Russia; State Novosibirsk Regional Clinical Hospital; International Tomography Center of SB RAS
Russian Federation

Anna I. Prokaeva 

630091, Novosibirsk, Krasny ave., 52;
630087, Novosibirsk, Nemirovicha-Danchenko st., 130;
630090, Novosibirsk, Institutskaya st., 3a



I. E. Arkhipov
Novosibirsk State Medical University of Minzdrav of Russia; State Novosibirsk Regional Clinical Hospital
Russian Federation

Ivan E. Arkhipov 

630091, Novosibirsk, Krasny ave., 52;
630087, Novosibirsk, Nemirovicha-Danchenko st., 130



E. E. Dorchinets
Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Ekaterina E. Dorchinets 

630091, Novosibirsk, Krasny ave., 52



D. S. Korobko
Novosibirsk State Medical University of Minzdrav of Russia; State Novosibirsk Regional Clinical Hospital; International Tomography Center of SB RAS
Russian Federation

Denis S. Korobko, candidate of medical sciences 

630091, Novosibirsk, Krasny ave., 52;
630087, Novosibirsk, Nemirovicha-Danchenko st., 130;
630090, Novosibirsk, Institutskaya st., 3a



N. A. Malkova
Novosibirsk State Medical University of Minzdrav of Russia; State Novosibirsk Regional Clinical Hospital; International Tomography Center of SB RAS
Russian Federation

Nadezhda A. Malkova, doctor of medical sciences, professor 

630091, Novosibirsk, Krasny ave., 52;
630087, Novosibirsk, Nemirovicha-Danchenko st., 130;
630090, Novosibirsk, Institutskaya st., 3a



References

1. Koch-Henriksen N., Sørensen P.S. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010;9(5):520–532. doi: 10.1016/S1474-4422(10)70064-8

2. Multiple Sclerosis International Federation. Atlas of MS. Available at: https://www.atlasofms.org/map/global/epidemiology/number-of-people-with-ms.

3. Inojosa H., Proschmann U., Akgün K., Ziemssen T. A focus on secondary progressive multiple sclerosis (SPMS): challenges in diagnosis and definition. J. Neurol. 2021;268(4):1210–1221. doi: 10.1007/s00415-019-09489-5

4. Thompson A.J., Baneke P. Multiple Sclerosis International Federation (MSIF) design and editorial support by summers editorial & design graphics by nutmeg productions printed by modern colour solutions.; 2013. Available at: www.msif.org.

5. Krajnc N., Bsteh G., Berger T. Clinical and paraclinical biomarkers and the hitches to assess conversion to secondary progressive multiple sclerosis: a systematic review. Front. Neurol. 2021;12:666868. doi: 10.3389/fneur.2021.666868

6. Ziemssen T., Bhan V., Chataway J., Chitnis T., Campbell Cree B.A., Havrdova E.K., Kappos L., Labauge P., Miller A., Nakahara J., … Hach T. Secondary progressive multiple sclerosis: A review of clinical characteristics, definition, prognostic tools, and disease-modifying therapies. Neurol. Neuroimmunol. Neuroinflamm. 2022;10(1):e200064. doi: 10.1212/NXI.0000000000200064

7. Maier S., Barcutean L., Andone S., Manu D., Sarmasan E., Bajko Z., Balasa R. Recent progress in the identification of early transition biomarkers from relapsing-remitting to progressive multiple sclerosis. Int. J. Mol. Sci. 2023;24(5):4375. doi: 10.3390/ijms24054375

8. Stepanova A.D., Evdoshenko E.P., Shumilina M.V., Korobko D.S., Barabanova M.A., Abroskina M.V., Vasilenko A.F., Yurchenko Yu.N., Davydovskaya M.V. Validation of Russian-language version of the Expanded Disability Status Scale (EDSS) for patients with multiple sclerosis in the Russian Federation. Meditsinskiye tekhnologii. Otsenka i vybor = Medical Technologies. Assessment and Choice. 2023;(1):41–49. [In Russian]. doi: 10.17116/medtech20234501141

9. Lublin F.D., Reingold S.C., Cohen J.A., Cutter G.R., Sørensen P.S., Thompson A.J., Wolinsky J.S., Balcer L.J., Banwell B., Barkhof F., … Polman C.H. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–286. doi: 10.1212/WNL.0000000000000560

10. Clinical recommendations. Multiple sclerosis. AllRussian Society of Neurologists. 2022. Available at: https://cr.minzdrav.gov.ru/recomend/739_1. [In Russian].

11. Cadavid D., Cohen J.A., Freedman M.S., Goldman M.D., Hartung H.P., Havrdova E., Jeffery D., Kapoor R., Miller A., Sellebjerg F., … Mikol D. The EDSSPlus, an improved endpoint for disability progression in secondary progressive multiple sclerosis. Mult. Scler. 2017;23(1):94–105. doi: 10.1177/1352458516638941

12. Demir S. Multiple Sclerosis Functional Composite. Noro Psikiyatr. Ars. 2018;55(Suppl 1):S66–S68. doi: 10.29399/npa.23349

13. Bin Sawad A., Seoane-Vazquez E., RodriguezMonguio R., Turkistani F. Evaluation of the Expanded Disability Status Scale and the Multiple Sclerosis Functional Composite as clinical endpoints in multiple sclerosis clinical trials: quantitative meta-analyses. Curr. Med. Res. Opin. 2016;32(12):1969–1974. doi: 10.1080/03007995.2016.1222516

14. Kragt J.J., van der Linden F.A., Nielsen J.M., Uitdehaag B.M., Polman C.H. Clinical impact of 20 % worsening on timed 25-foot walk and 9-hole peg test in multiple sclerosis. Mult. Scler. 2006;12(5):594–598. doi: 10.1177/1352458506070768

15. Bosma L.V., Kragt J.J., Brieva L., Khaleeli Z., Montalban X., Polman C.H., Thompson A.J., Tintoré M., Uitdehaag B.M. Progression on the multiple sclerosis functional composite in multiple sclerosis: what is the optimal cut-off for the three components? Mult. Scler. 2010;16(7):862–867. doi: 10.1177/1352458510370464

16. Rudick R.A., Cutter G., Reingold S. The multiple sclerosis functional composite: a new clinical outcome measure for multiple sderosis trials. Mult. Scler. 2002;8(5):359–365. doi: 10.1191/1352458502ms845oa

17. Orbach R., Zhao Z., Wang Y.C., O’Neill G., Cadavid D. Comparison of disease activity in SPMS and PPMS in the context of multicenter clinical trials. PLoS One. 2012;7(10):e45409. doi: 10.1371/journal.pone.0045409

18. Rosti-Otajärvi E., Hämäläinen P., Koivisto K., Hokkanen L. The reliability of the MSFC and its components. Acta Neurol. Scand. 2008;117(6):421–427. doi: 10.1111/j.1600-0404.2007.00972.x

19. Solari A., Radice D., Manneschi L., Motti L., Montanari E. The multiple sclerosis functional composite: different practice effects in the three test components. J. Neurol. Sci. 2005;228(1):71–74. doi: 10.1016/j.jns.2004.09.033

20. Langdon D.W., Amato M.P., Boringa J., Brochet B., Foley F., Fredrikson S., Hämäläinen P., Hartung H.P., Krupp L., Penner I.K., Reder A.T., Benedict R.H. Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Mult. Scler. 2012;18(6):891–898. doi: 10.1177/1352458511431076

21. Manca R., Stabile M.R., Bevilacqua F., Cadorin C., Piccione F., Sharrack B., Venneri A. Cognitive speed and white matter integrity in secondary progressive multiple sclerosis. Mult. Scler. Relat. Disord. 2019;30:198–207. doi: 10.1016/j.msard.2019.02.021

22. Eijlers A.J.C., van Geest Q., Dekker I., Steenwijk M.D., Meijer K.A., Hulst H.E., Barkhof F., Uitdehaag B.M.J., Schoonheim M.M., Geurts J.J.G. Predicting cognitive decline in multiple sclerosis: a 5-year follow-up study. Brain. 2018;141(9):2605–2618. doi: 10.1093/brain/awy202

23. van Schependom J., D’hooghe M.B., Cleynhens K., D’hooge M., Haelewyck M.C., de Keyser J., Nagels G. The Symbol Digit Modalities Test as sentinel test for cognitive impairment in multiple sclerosis. Eur. J. Neurol. 2014;21(9):1219–1225. doi: 10.1111/ene.12463

24. López-Góngora M., Querol L., Escartín A. A one-year follow-up study of the Symbol Digit Modalities Test (SDMT) and the Paced Auditory Serial Addition Test (PASAT) in relapsing-remitting multiple sclerosis: an appraisal of comparative longitudinal sensitivity. BMC Neurol. 2015;15:40. doi: 10.1186/s12883-015-0296-2

25. Ntoskou K., Messinis L., Nasios G., Martzoukou M., Makris G., Panagiotopoulos E., Papathanasopoulos P. Cognitive and language deficits in multiple sclerosis: comparison of relapsing remitting and secondary progressive subtypes. Open Neurol. J. 2018;12:19–30. doi: 10.2174/1874205X01812010019

26. Chard D., Trip S.A. Resolving the clinicoradiological paradox in multiple sclerosis. F1000Res. 2017;6:1828. doi: 10.12688/f1000research.11932.1

27. Barkhof F., Calabresi P.A., Miller D.H., Reingold S.C. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat. Rev. Neurol. 2009;5(5):256–266. doi: 10.1038/nrneurol.2009.41

28. de Stefano N., Stromillo M.L., Giorgio A., Bartolozzi M.L., Battaglini M., Baldini M., Portaccio E., Amato M.P., Sormani M.P. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2016;87(1):93–99. doi: 10.1136/jnnp-2014-309903

29. University of California, San Francisco MSEPIC Team; Cree B.A.C., Hollenbach J.A., Bove R., Kirkish G., Sacco S., Caverzasi E., Bischof A., Gundel T., Zhu A.H., … Hauser S.L. Silent progression in disease activity-free relapsing multiple sclerosis. Ann. Neurol. 2019;85(5):653–666. doi: 10.1002/ana.25463

30. von Gumberz J., Mahmoudi M., Young K., Schippling S., Martin R., Heesen C., Siemonsen S., Stellmann J.P. Short-term MRI measurements as predictors of EDSS progression in relapsing-remitting multiple sclerosis: grey matter atrophy but not lesions are predictive in a real-life setting. PeerJ. 2016;4:e2442. doi: 10.7717/peerj.2442

31. Ciampi E., Pareto D., Sastre-Garriga J., Vidal-Jordana A., Tur C., Río J., Tintoré M., Auger C., Rovira A., Montalban X. Grey matter atrophy is associated with disability increase in natalizumab-treated patients. Mult. Scler. 2017;23(4):556–566. doi: 10.1177/1352458516656808

32. Jacobsen C., Hagemeier J., Myhr K.M., Nyland H., Lode K., Bergsland N., Ramasamy D.P., Dalaker T.O., Larsen J.P., Farbu E., Zivadinov R. Brain atrophy and disability progression in multiple sclerosis patients: a 10-year follow-up study. J. Neurol. Neurosurg. Psychiatry. 2014;85(10):1109–1115. doi: 10.1136/jnnp-2013-306906

33. Bermel R.A., Bakshi R. The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol. 2006;5(2):158–170. doi: 10.1016/S1474-4422(06)70349-0

34. Treabă C.A., Bălaşa R., Podeanu D.M., Simu I.P., Buruian M.M. Cerebral lesions of multiple sclerosis: is gadolinium always irreplaceable in assessing lesion activity? Diagn. Interv. Radiol. 2014;20(2):178–184. doi: 10.5152/dir.2013.13313

35. Zivadinov R., Jakimovski D., Gandhi S., Ahmed R., Dwyer M.G., Horakova D., Weinstock-Guttman B., Benedict R.R., Vaneckova M., Barnett M., Bergsland N. Clinical relevance of brain atrophy assessment in multiple sclerosis. Implications for its use in a clinical routine. Exper. Rev. Neurother. 2016;16(7):777–793. doi: 10.1080/14737175.2016.1181543

36. Zivadinov R., Horakova D., Bergsland N., Hagemeier J., Ramasamy D.P., Uher T., Vaneckova M., Havrdova E., Dwyer M.G. A Serial 10-year follow-up study of atrophied brain lesion volume and disability progression in patients with relapsing-remitting MS. AJNR Am. J. Neuroradiol. 2019;40(3):446–452. doi: 10.3174/ajnr.A5987

37. Tavazzi E., Zivadinov R., Dwyer M.G., Jakimovski D., Singhal T., Weinstock-Guttman B., Bergsland N. MRI biomarkers of disease progression and conversion to secondary-progressive multiple sclerosis. Expert. Rev. Neurother. 2020;20(8):821–834. doi: 10.1080/14737175.2020.1757435

38. Krotenkova I.A., Bryuhov V.V., Zaharova M.N., Morozova S.N., Krotenkova M.V., Askarova L.Sh. Brain and spine atrophy in relapsing remitting multiple sclerosis: a 3-year follow-up study. Luchevaya diagnostika i terapiya = Diagnostic Radiology and Radiotherapy. 2017;(1):35–39. [In Russian]. doi: 10.22328/2079-5343-2017-1-35-39

39. Krotenkova I.A., Bryukhov V.V., Krotenkova M.V., Zakharova M.N., Askarova L.Sh. Brain atrophy and perfusion changes in patients with relapsing-remitting and secondary progressive multiple sclerosis. Zhurnal nevrologii i psikhiatrii imeni Sergeya Sergeevicha Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2018;8(2):47–54. [In Russian]. doi: 10.17116/jnevro201811808247

40. Eshaghi A., Prados F., Brownlee W.J., Altmann D.R., Tur C., Cardoso M.J., de Angelis F., van de Pavert S.H., Cawley N., de Stefano N., … MAGNIMS study group. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann. Neurol. 2018;83(2):210–222. doi: 10.1002/ana.25145

41. Hofstetter L., Naegelin Y., Filli L., Kuster P., Traud S., Smieskova R., Mueller-Lenke N., Kappos L., Gass A., Sprenger T., … Bendfeldt K. Progression in disability and regional grey matter atrophy in relapsing-remitting multiple sclerosis. Mult. Scler. 2014;20(2):202–213. doi: 10.1177/1352458513493034

42. Hänninen K., Viitala M., Paavilainen T., Karhu J.O., Rinne J., Koikkalainen J., Lötjönen J., Soilu-Hänninen M. Thalamic atrophy predicts 5-year disability progression in multiple sclerosis. Front. Neurol. 2020;11:606. doi: 10.3389/fneur.2020.00606

43. Hänninen K., Viitala M., Paavilainen T., Karhu J.O., Rinne J., Koikkalainen J., Lötjönen J., Soilu-Hänninen M. Thalamic atrophy without whole brain atrophy is associated with absence of 2-year NEDA in multiple sclerosis. Front. Neurol. 2019;10:459. doi: 10.3389/fneur.2019.00459

44. Guevara C., Garrido C., Martinez M., Farias G.A., Orellana P., Soruco W., Alarcón P., Diaz V., Silva C., Kempton M.J., Barker G., de Grazia J. Prospective assessment of no evidence of disease activity-4 status in early disease stages of multiple sclerosis in routine clinical practice. Front. Neurol. 2019;10:788. doi: 10.3389/fneur.2019.00788

45. Preziosa P., Pagani E., Meani A., Moiola L., Rodegher M., Filippi M., Rocca M.A. Slowly expanding lesions predict 9-year multiple sclerosis disease progression. Neurol. Neuroimmunol. Neuroinflamm. 2022;9(2):e1139. doi: 10.1212/NXI.0000000000001139

46. Luchetti S., Fransen N.L., van Eden C.G., Ramaglia V., Mason M., Huitinga I. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 2018;135(4):511–528. doi: 10.1007/s00401-018-1818-y

47. Kolb H., Al-Louzi O., Beck E.S., Sati P., Absinta M., Reich D.S. From pathology to MRI and back: Clinically relevant biomarkers of multiple sclerosis lesions. Neuroimage Clin. 2022;36:103194. doi: 10.1016/j.nicl.2022.103194

48. Absinta M., Sati P., Masuzzo F., Nair G., Sethi V., Kolb H., Ohayon J., Wu T., Cortese I.C.M., Reich D.S. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol. 2019;76(12):1474–1483. doi: 10.1001/jamaneurol.2019.2399

49. Popova E.V., Bryuhov V.V., Boyko A.N., Krotenkova M.V. Radiologically isolated syndrome as a possible preclinical stage of primary-progressive multiple sclerosis. Zhurnal nevrologii i psikhiatrii imeni Sergeya Sergeevicha Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(8-2):35–39. [In Russian]. doi: 10.17116/jnevro201811808235

50. Bernitsas E., Bao F., Seraji-Bozorgzad N., Chorostecki J., Santiago C., Tselis A., Caon C., Zak I., Millis S., Khan O. Spinal cord atrophy in multiple sclerosis and relationship with disability across clinical phenotypes. Mult. Scler. Relat. Disord. 2015;4(1):47–51. doi: 10.1016/j.msard.2014.11.002

51. Tsagkas C., Magon S., Gaetano L., Pezold S., Naegelin Y., Amann M., Stippich C., Cattin P., Wuerfel J., Bieri O., Sprenger T., Kappos L., Parmar K. Spinal cord volume loss: A marker of disease progression in multiple sclerosis. Neurology. 2018;91(4):e349–e358. doi: 10.1212/WNL.0000000000005853

52. Casserly C., Seyman E.E., Alcaide-Leon P., Guenette M., Lyons C., Sankar S., Svendrovski A., Baral S., Oh J. Spinal cord atrophy in multiple sclerosis: a systematic review and meta-analysis. J. Neuroimaging. 2018;28(6):556–586. doi: 10.1111/jon.12553

53. Casserly C., Seyman E.E., Alcaide-Leon P., Guenette M., Lyons C., Sankar S., Svendrovski A., Baral S., Oh J. Spinal cord atrophy in multiple sclerosis: a systematic review and meta-analysis. J. Neuroimaging. 2018;28(6):556–586. doi: 10.1111/jon.12553

54. Rocca M.A., Valsasina P., Meani A., Gobbi C., Zecca C., Barkhof F., Schoonheim M.M., Strijbis E.M., Vrenken H., Gallo A., … MAGNIMS Study Group. Spinal cord lesions and brain grey matter atrophy independently predict clinical worsening in definite multiple sclerosis: a 5-year, multicentre study. J. Neurol. Neurosurg. Psychiatry. 2023;94(1):10–18. doi: 10.1136/jnnp2022-329854

55. Bischof A., Papinutto N., Keshavan A., Rajesh A., Kirkish G., Zhang X., Mallott J.M., Asteggiano C., Sacco S., Gundel T.J., … Henry R.G. Spinal cord atrophy predicts progressive disease in relapsing multiple sclerosis. Ann. Neurol. 2022;91(2):268–281. doi: 10.1002/ana.26281

56. Tsagkas C., Huck-Horvath A., Cagol A., Haas T., Amann M., Barakovic M., Ruberte E., Melie-Garcia L., Weigel M., Pezold S., … Parmar K. Longitudinal assessment of cervical spinal cord compartments in multiple sclerosis. Mult. Scler. Rela. Disord. 2023;71:104545. doi: 10.1016/j.msard.2023.104545

57. Tsagkas C., Huck-Horvath A., Cagol A., Haas T., Barakovic M., Amann M., Ruberte E., Melie-Garcia L., Weigel M., Pezold S., … Parmar K. Anterior horn atrophy in the cervical spinal cord: A new biomarker in progressive multiple sclerosis. Mult. Scler. 2023;29(6):702–718. doi: 10.1177/13524585221139152

58. Davydovskaya M.V., Tsysar’ M.A., Boyko A.N., Akopyan V.S., Semenova N.S., Filonenko I.V., Fomin A.V., Gusev E.I. Damage of macular ganglion cell complex and peripapillary retinal nerve fiber layer in multiple sclerosis. Zhurnal nevrologii i psikhiatrii imeni Sergeya Sergeevicha Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2012;2(2):47–51. [In Russian].

59. Green A.J., McQuaid S., Hauser S.L., Allen I.V., Lyness R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain. 2010;133(Pt 6):1591–1601. doi: 10.1093/brain/awq080

60. Britze J., Frederiksen J.L. Optical coherence tomography in multiple sclerosis. Eye (Lond). 2018;32(5):884–888. doi: 10.1038/s41433-017-0010-2

61. Alonso R., Gonzalez-Moron D., Garcea O. Optical coherence tomography as a biomarker of neurodegeneration in multiple sclerosis: A review. Mult. Scler. Relat. Disord. 2018;22:77–82. doi: 10.1016/j.msard.2018.03.007

62. Swinnen S., de Wit D., van Cleemput L., Cassiman C., Dubois B. Optical coherence tomography as a prognostic tool for disability progression in MS: a systematic review. J. Neurol. 2023;270(2):1178–1186. doi: 10.1007/s00415-022-11474-4

63. Martinez-Lapiscina E.H., Arnow S., Wilson J.A., Saidha S., Preiningerova J.L., Oberwahrenbrock T., Brandt A.U., Pablo L.E., Guerrieri S., Gonzalez I., … IMSVISUAL consortium. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol. 2016;15(6):574–584. doi: 10.1016/S1474-4422(16)00068-5

64. Bsteh G., Hegen H., Teuchner B., Berek K., Wurth S., Auer M., di Pauli F., Deisenhammer F., Berger T. Peripapillary retinal nerve fibre layer thinning rate as a biomarker discriminating stable and progressing relapsing-remitting multiple sclerosis. Eur. J. Neurol. 2019;26(6):865–871. doi: 10.1111/ene.13897

65. Bsteh G., Berek K., Hegen H., Altmann P., Wurth S., Auer M., Zinganell A., di Pauli F., Rommer P., Leutmezer F., Deisenhammer F., Berger T. Macular ganglion cell-inner plexiform layer thinning as a biomarker of disability progression in relapsing multiple sclerosis. Mult. Scler. 2021;27(5):684–694. doi: 10.1177/1352458520935724

66. Schurz N., Sariaslani L., Altmann P., Leutmezer F., Mitsch C., Pemp B., Rommer P., Zrzavy T., Berger T., Bsteh G. Evaluation of retinal layer thickness parameters as biomarkers in a real-world multiple sclerosis cohort. Eye Brain. 2021;13:59–69. doi: 10.2147/EB.S295610

67. Cilingir V., Batur M. First measured retinal nerve fiber layer thickness in RRMS can be used as a biomarker for the course of the disease: threshold value discussions. J. Neurol. 2021;268(8):2858–2865. doi: 10.1007/s00415-021-10469-x

68. Lambe J., Fitzgerald K.C., Murphy O.C., Filippatou A.G., Sotirchos E.S., Kalaitzidis G., Vasileiou E., Pellegrini N., Ogbuokiri E., Toliver B., … Calabresi P.A. Association of spectral-domain OCT with long-term disability worsening in multiple sclerosis. Neurology. 2021;96(16):e2058–e2069. doi: 10.1212/WNL.0000000000011788

69. Andryuhina O.M., Ryabtseva A.A., Kotov S.V., Jakushina T.I., Kuchina N.V. Monitoring of ophthalmological indicators in patients with multiple sclerosis. Al’manakh klinicheskoy meditsiny = Almanac of Clinical Medicine. 2015;(36):53–58. [In Russian].

70. Gabilondo I., Martínez-Lapiscina E.H., Martínez-Heras E., Fraga-Pumar E., Llufriu S., Ortiz S., Bullich S., Sepulveda M., Falcon C., Berenguer J., Saiz A., Sanchez-Dalmau B., Villoslada P. Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann. Neurol. 2014;75(1):98–107. doi: 10.1002/ana.24030

71. Kupersmith M.J., Garvin M.K., Wang J.K., Durbin M., Kardon R. Retinal ganglion cell layer thinning within one month of presentation for optic neuritis. Mult. Scler. 2016;22(5):641–648. doi: 10.1177/1352458515598020

72. Britze J., Frederiksen J.L. Optical coherence tomography in multiple sclerosis. Eye (Lond). 2018;32(5):884–888. doi: 10.1038/s41433-017-0010-2

73. Zhostkova M.A., Davydovskaya M.V., Boyko A.N., Akopyan V.S. The three-year follow-up study of retinal changes in patients with multiple sclerosis. Zhurnal nevrologii i psikhiatrii imeni Sergeya Sergeevicha Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2016;116(10-2):35–41.

74. Skirková M., Mikula P., Maretta M., Fedičová M., Vitková M., Frigová L., Szilasi J., Moravská M., Horňák M., Szilasiová J. Associations of optical coherence tomography with disability and brain MRI volumetry in patients with multiple sclerosis. Neurol. Neurochir. Pol. 2022;56(4):326–332. doi: 10.5603/PJNNS.a2022.0022

75. Glasner P., Sabisz A., Chylińska M., Komendziński J., Wyszomirski A., Karaszewski B. Retinal nerve fiber and ganglion cell complex layer thicknesses mirror brain atrophy in patients with relapsing-remitting multiple sclerosis. Restor. Neuro. Neurosci. 2022;40(1):35–42. doi: 10.3233/RNN-211176

76. Mizell R., Chen H., Lambe J., Saidha S., Harrison D.M. Association of retinal atrophy with cortical lesions and leptomeningeal enhancement in multiple sclerosis on 7T MRI. Mult. Scler. 2022;28(3):393–405. doi: 10.1177/13524585211023343

77. Khalil M., Teunissen C.E., Otto M., Piehl F., Sormani M.P., Gattringer T., Barro C., Kappos L., Comabella M., Fazekas F., … Kuhle J. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018;14(10):577–589. doi: 10.1038/s41582-018-0058-z

78. Yuan A., Nixon R.A. Neurofilament proteins as biomarkers to monitor neurological diseases and the efficacy of therapies. Front. Neurosci. 2021;15:689938. doi: 10.3389/fnins.2021.689938

79. Barro C., Benkert P., Disanto G., Tsagkas C., Amann M., Naegelin Y., Leppert D., Gobbi C., Granziera C., Yaldizli Ö., … Kuhle J. Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain. 2018;141(8):2382–2391. doi: 10.1093/brain/awy154

80. Disanto G., Barro C., Benkert P., Naegelin Y., Schädelin S., Giardiello A., Zecca C., Blennow K., Zetterberg H., Leppert D., … Swiss Multiple Sclerosis Cohort Study Group. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 2017;81(6):857–870. doi: 10.1002/ana.24954

81. Novakova L., Zetterberg H., Sundström P., Axelsson M., Khademi M., Gunnarsson M., Malmeström C., Svenningsson A., Olsson T., Piehl F., Blennow K., Lycke J. Monitoring disease activity in multiple sclerosis using serum neurofilament light protein. Neurology. 2017;89(22):2230–2237. doi: 10.1212/WNL.0000000000004683

82. Bhan A., Jacobsen C., Myhr K.M., Dalen I., Lode K., Farbu E. Neurofilaments and 10-year follow-up in multiple sclerosis. Mult. Scler. 2018;24(10):1301–1307. doi: 10.1177/1352458518782005

83. Ferrazzano G., Crisafulli S.G., Baione V., Tartaglia M., Cortese A., Frontoni M., Altieri M., Pauri F., Millefiorini E., Conte A. Early diagnosis of secondary progressive multiple sclerosis: focus on fluid and neurophysiological biomarkers. J. Neurol. 2021;268(10):3626–3645. doi: 10.1007/s00415-020-09964-4

84. Khalil M., Teunissen C.E., Otto M., Piehl F., Sormani M.P., Gattringer T., Barro C., Kappos L., Comabella M., Fazekas F., … Kuhle J. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018;14(10):577–589. doi: 10.1038/s41582-018-0058-z

85. Ferreira-Atuesta C., Reyes S., Giovanonni G., Gnanapavan S. The evolution of neurofilament light chain in multiple sclerosis. Front. Neurosci. 2021;15:642384. doi: 10.3389/fnins.2021.642384

86. Manouchehrinia A., Stridh P., Khademi M., Leppert D., Barro C., Michalak Z., Benkert P., Lycke J., Alfredsson L., Kappos L., … Kockum I. Plasma neurofilament light levels are associated with risk of disability in multiple sclerosis. Neurology. 2020;94(23)


Review

For citations:


Prokaeva A.I., Arkhipov I.E., Dorchinets E.E., Korobko D.S., Malkova N.A. Multiple sclerosis: modern diagnostic markers and prognostic factors of disease progression. Сибирский научный медицинский журнал. 2024;44(1):39-51. (In Russ.) https://doi.org/10.18699/SSMJ20240105

Views: 955


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)