Preview

Сибирский научный медицинский журнал

Advanced search

Towards effects from stent implantation into coronary bifurcation stenosis: experiment and simulation

https://doi.org/10.18699/SSMJ20240103

Abstract

Coronary artery disease is a widespread cause of death and disability in the population. Angioplasty of the coronary arteries is one of the most common methods of eliminating the cause of ischemia – stenosis of the coronary arteries. As a result of stent installation, a change in the angle of vascular bifurcation occurs usually, as well as a redistribution of volumetric blood flow in the coronary artery system. Considering the high variability of the branching angioarchitecture of these arteries, as well as the structure of their environment, the problem of predicting the specific redistribution of blood flow in these arteries remains unsolved; the main ways of its implementation are computational and experimental hemodynamics.
Material and methods. This paper uses an experimental approach to explore the effect of stent placement in a model of coronary artery stenosis, and also provides an analysis of the current level of awareness of the scientific community on this issue.
Results and discussion. The experiment showed that the throughput of the model increases by 14 % compared to the model with stenosis, and the redistribution of flows in the model depends not on diameters but on the anatomy of a particular vascular network. The data of the performed mathematical modeling are generally consistent with the results of the experiment before stent installation, when the coronary tree consists of several load-bearing branches, but have quantitative differences for the distal branches of the coronary artery model in the presence of an installed stent.
Conclusions. The results of the work can be used to accumulate an experimental data array on the restructuring of blood flow during angioplasty, and can also be used to verify the numerical hemodynamics of the coronary arteries during the virtual installation of a stent in them to resolve stenosis. 

About the Authors

R. A. Gaifutdinov
Lavrentyev Institute of Hydrodynamics of SB RAS
Russian Federation

Rinat A. Gaifutdinov 

630090, Novosibirsk, Aсademika Lavrentieva ave., 15



Yu. O. Kuyanova
Lavrentyev Institute of Hydrodynamics of SB RAS
Russian Federation

Yulia O. Kuyanova 

630090, Novosibirsk, Aсademika Lavrentieva ave., 15



D. A. Khelimsky
Meshalkin National Medical Research Center of Minzdrav of Russia
Russian Federation

Dmitry A. Khelimsky, candidate of medical sciences 

630055, Novosibirsk, Reshkunovskaya st., 15



O. V. Krestyaninov
Meshalkin National Medical Research Center of Minzdrav of Russia
Russian Federation

Oleg V. Krestyaninov, doctor of medical sciences 

630055, Novosibirsk, Reshkunovskaya st., 15



A. A. Tulupov
Lavrentyev Institute of Hydrodynamics of SB RAS; International Tomography Center of SB RAS
Russian Federation

Andrey A. Tulupov, doctor of medical sciences, professor, corresponding member of the RAS 

630090, Novosibirsk, Aсademika Lavrentieva ave., 15;
630090, Novosibirsk, Institutskaya st., 3а



D. V. Parshin
Lavrentyev Institute of Hydrodynamics of SB RAS
Russian Federation

Daniil V. Parshin, candidate of physical and mathematical sciences 

630090, Novosibirsk, Aсademika Lavrentieva ave., 15



References

1. Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M., de Ferranti S., Després J.P., Fullerton H.J., Howard V.J., … American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322. doi: 10.1161/CIR.0000000000000152

2. Liu X., Wang M., Zhang N., Fan Z., Fan Y., Deng X. Effects of endothelium, stent design and deployment on the nitric oxide transport in stented artery: a potential role in stent restenosis and thrombosis. Med. Biol. Eng. Comput. 2015;53(5):427–439. doi: 10.1007/s11517-015-1250-6

3. Botas J. Bifurcation lesions: the last great frontier for coronary interventions. Rev. Esp. Cardiol. 2008;61(9):911–913. doi: doi: 10.1016/S1885-5857(08)60249-2

4. Eshtehardi P., McDaniel M.C., Suo J., Dhawan S.S., Timmins L.H., Binongo J.N., Golub L.J., Corban M.T., Finn A.V., Oshinski J.N., Quyyumi A.A., Giddens D.P., Samady H. Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J. Am. Heart. Assoc. 2012;1(4):e002543. doi: 10.1161/JAHA.112.002543

5. Shishikura D., Sidharta S.L., Honda S., Takata K., Kim S.W., Andrews J., Montarello N., Delacroix S., Baillie T., Worthley M.I., Psaltis P.J., Nicholls St.J. The relationship between segmental wall shear stress and lipid core plaque derived from near-infrared spectroscopy. Atherosclerosis. 2018;275:68–73. doi: 10.1016/j.atherosclerosis.2018.04.022

6. Geerlings-Batt J., Sun Z. Evaluation of the relationship between left coronary artery bifurcation angle and coronary artery disease: a systematic review. J. Clin. Med. 2022; 11(17):5143. doi: 10.3390/jcm11175143

7. Feng J., Wang N., Wang Y., Tang X., Yuan J. Haemodynamic mechanism of formation and distribution of coronary atherosclerosis: A lesion-specific model. Proc. Inst. Mech. Eng. H. 2020;234(11):1187–1196. doi: 10.1177/0954411920947972

8. Murasato Y., Meno K., Mori T., Tanenaka K. Impact of coronary bifurcation angle on the pathogenesis of atherosclerosis and clinical outcome of coronary bifurcation intervention-A scoping review. PLoS One. 2022;17(8):e0273157. doi: 10.1371/journal.pone.0273157

9. Baskurt O.K., Hardeman M.R., Rampling M.W., Meiselman H.J. Handbook of hemorheology and hemodynamics biomedical and health research. IOSPress, 2007. 468 p.

10. Chen R., Wang B., Liu Y., He J., Lin R., Li D. Gelatin-based perfusable, endothelial carotid artery model for the study of atherosclerosis. Biomed. Eng. Online. 2019;18(1):87. doi: 10.1186/s12938-019-0706-6

11. Geers A.J., Larrabide I., Morales H.G., Frangi A.F. Approximating hemodynamics of cerebral aneurysms with steady flow simulations. J. Biomech. 2014;47(1):178–185. doi: 10.1016/j.jbiomech.2013.09.033

12. Caro K., Pedley T., Schroter R., Seed U. Circulatory mechanics. Moscow: Mir, 1981. 624 p. [In Russian].

13. Hu X., Liu X., Wang H., Xu L., Wu P., Zhang W., Niu Zh., Zhang L., Gao Q. A novel physics-based model for fast computation of blood flow in coronary arteries. Biomed. Eng. OnLine. 2023;22(1):56. doi: 10.1186/s12938-023-01121-y

14. Taylor D.J., Feher J., Halliday I., Hose D.R., Gosling R., Aubiniere-Robb L., van ‘t Veer M., Keulards D., Tonino P.A.L., Rochette M., Gunn J., Morris P.D. Refining our understanding of the flow through coronary artery branches; revisiting Murray’s law in human epicardial coronary arteries. Front. Physiol. 2022;13:871912. doi: 10.3389/fphys.2022.871912

15. Schoenenberger A.W., Urbanek N., Toggweiler S., Seelos R., Jamshidi P., Resink Th.J., Erne P. Deviation from Murray’s law is associated with a higher degree of calcification in coronary bifurcations. Atherosclerosis. 2012;221(1):124–130. doi: 10.1016/j.atherosclerosis.2011.12.040

16. Painter P.R., Edén P., Bengtsson H.U. Pulsatile blood flow, shear force, energy dissipation and Murray’s Law. Theor. Biol. Med. Model. 2006;3:31. doi: 10.1186/1742-4682-3-31

17. Tikhvinskii D.V., Merzhoeva L.R., Chupakhin A.P., Karpenko A.A., Parshin D.V. Computational analysis of the impact of aortic bifurcation geometry to AAA haemodynamics. Russ. J. Num. Anal. Math. Modell. 2022;37(5):311–329. doi: 10.1515/rnam-2022-0026

18. Sciubba E. A critical reassessment of the Hess–Murray law. Entropy. 2016;18(8):283. doi: 10.3390/e18080283

19. Huang Q.H., Wu Y.F., Xu Y., Hong B., Zhang L., Liu J.M. Vascular geometry change because of endovascular stent placement for anterior communicating artery aneurysms. AJNR Am. J. Neuroradiol. 2011;32(9):1721–1725. doi: 10.3174/ajnr.A2597

20. Yao L., Wu Q., Yuan B., Wen L., Yi R., Zhou X., He W., Zhang R., Chen Sh., Zhang X. Correlation between vascular geometry changes and long-term outcomes after enterprise stent deployment for intracranial aneurysms located on small arteries. World Neurosurg. 2021;153:e96-e104. doi: 10.1016/j.wneu.2021.06.038

21. Niu Yu., Sun A., Wang Z., Yao Ch., Song J. A hypothetical vascular stent with locally enlarged segment and the hemodynamic evaluation. Cardiol. Res. Pract. 2020;2020:7041284. doi: 10.1155/2020/7041284

22. Zhang B.C., Tu S.X., Karanasos A., van Geuns R.J., de Jaegere P., Zijlstra F., Regar E. Association of stent-induced changes in coronary geometry with late stent failure: Insights from three-dimensional quantitative coronary angiographic analysis. Catheter Cardiovasc. Interv. 2018;92(6):1040–1048. doi: 10.1002/ccd.27520

23. Silva M.V., Costa J.R., Abizaid A., Staico R., Taiguara D., Borghi T.C., Costa R., Chamié D., Sousa A.G.M.R., Sousa J.E. Changes in coronary angulation after bioresorbable vascular scaffold and cobalt-chromium and stainless steel stent implantation. Revista Brasileira de Cardiologia Invasiva (English Edition). 2013;21(4):332–337. doi: 10.1016/S2214-1235(15)30155-1

24. Zhang B., Shengxian T.U. Does the stent induced change in coronary geometry affect prognosis? Insights from 3-dimensional quantitative coronary angiographic analysis on the impact of vessel bending on coronary in-stent resten. European Heart Journal. 1973;38(1):ehx502.1973. doi: 10.1093/eurheartj/ehx502.1973

25. Üveges Á., Jenei C., Kiss T., Szegedi Z., Tar B., Szabó G.T., Czuriga D., Kőszegi Z. Three-dimensional evaluation of the spatial morphology of stented coronary artery segments in relation to restenosis. Int. J. Cardiovasc. Imaging. 2019;35(10):1755–1763. doi: 10.1007/s10554-019-01628-3

26. Bocharnikov M.V. Relationship between phytocenotic diversity of the Northeastern Transbaikal orobiome and bioclimatic parameters. Dokl. Biol. Sci. 2022;507(1):281–300. doi: 10.1134/S0012496622060011

27. Bahrami S., Norouzi M. A numerical study on hemodynamics in the left coronary bifurcation with normal and hypertension conditions. Biomech. Model. Mechanobiol. 2018; 17(6):1785–1796. doi: 10.1007/s10237-018-1056-1

28. Bangalore S., Bhatt D.L. Coronary intravascular ultrasound. Circulation. 2013; 127(25):e868–е874. doi: 10.1161/CIRCULATIONAHA.113.003534

29. Araki M., Park S.J., Dauerman H.L., Uemura S., Kim J.S., di Mario C., Johnson T.W., Guagliumi G., Kastrati A., Joner M., … Jang I.K. Optical coherence tomography in coronary atherosclerosis assessment and intervention. Nat. Rev. Cardiol. 2022;19(10):684–703. doi: 10.1038/s41569-022-00687-9

30. Candreva A., Gallo D., Munhoz D., Rizzini M.L., Mizukami T., Seki R., Sakai K., Sonck J., Mazzi V., Ko B., … Collet C. Influence of intracoronary hemodynamic forces on atherosclerotic plaque phenotypes. Int. J. Cardiol. 2023;131668. doi: 10.1016/j.ijcard.2023.131668


Review

Views: 425


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)