Study of the fungicidal effect of the chimeric form of interferon alpha-2b in relation to fungi-pathogens of plants and animals
https://doi.org/10.18699/SSMJ20230616
Abstract
The purpose of this study is to evaluate the fungicidal effect of a chimeric form of recombinant interferon alpha-2b, fused with human apolipoprotein A-I, obtained by biosynthesis in the yeast Pichia рastoris, against significant fungal pathogens – pathogens of human and plant diseases.
Material and methods. The fungicidal activity of the chimeric cytokine was assessed using the agar block method against fungal pathogens: Alternaria alternata, Fusarium oxysporum, Aspergillus spp. and Penicillum spp. The fungicidal effect was assessed visually and by microscopy of a section of the fungal body stained with methylene blue, the germination of fungal spores – by subculture, the cytotoxicity of interferon preparations – on Vero cell culture.
Results and discussion. The studied recombinant interferons suppress the growth and reproduction of pathogenic fungi. Chimeric IFN has the greatest effect against pathogenic fungi A. alternate, Penicillum at a concentration of 15 ng/ml; inhibition of sporulation of fungi F. oxysporum and Aspergillus up to 87 % is achieved at a concentration of 150 ng/ml. The cytotoxicity of the new chimeric cytokine is 5,8 μg/ml, which is significantly more than toxic concentrations for fungi.
Conclusions. The chimeric form of interferon alpha-2b can be used as an immunotherapeutic agent with fungicidal activity.
About the Authors
V. S. MaslennikovaRussian Federation
Vladislavа S. Maslennikova
630117, Novosibirsk, Timakova st., 2; 630039, Novosibirsk, Dobrolyubova st., 160
C. M. Miroshnichenko
Russian Federation
Svetlana M. Miroshnichenko
630117, Novosibirsk, Timakova st., 2
E. V. Shelikhova
Russian Federation
Evgeniya V. Shelikhova
630117, Novosibirsk, Timakova st., 2; 630039, Novosibirsk, Dobrolyubova st., 160
K. A. Tabanyukhov
Russian Federation
Kirill A. Tabanyukhov
630117, Novosibirsk, Timakova st., 2; 630039, Novosibirsk, Dobrolyubova st., 160
I. Yu. Deulin
Russian Federation
Ilya Yu. Deulin
630117, Novosibirsk, Timakova st., 2
M. B. Pykhtina
Russian Federation
Mariya B. Pykhtina - candidate of biological sciences.
630117, Novosibirsk, Timakova st., 2
References
1. Bongomin F., Gago S., Oladele R.O., Denning D.W. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi (Basel). 2017;3(4):57. doi: 10.3390/jof3040057
2. Celakovská J., Josef B., Ettler K., Vaneckova J., Ettlerova K., Jan K. Sensitization to fungi in atopic dermatitis patients 14 year and older – Association with other atopic diseases and parameters. Indian J. Dermatol. 2018;63(5):391–398. doi: 10.4103/ijd.IJD_493_17
3. Limon J.J., Skalski J.H., Underhill D.M. Commensal fungi in health and disease. Cell Host Microbe. 2018;22(2):156–165. doi: 10.1016/j.chom.2017.07.002
4. Chabi M.L., Goracci A., Roche N., Paugam A., Lupo A., Revel M.P. Pulmonary aspergillosis. Diagn. Interv. Imaging. 2015;96(5):435–442. doi: 10.1016/j.diii.2015.01.005
5. Abel-Fernández E., Martínez M.J., Galán T., Pineda F. Going over fungal allergy: alternaria alternata and its allergens. J. Fungi (Basel). 2023;9(5):582. doi: 10.3390/jof9050582
6. Nucci M., Anaissie Е. Cutaneous infection by Fusarium species in healthy and immunocompromised hosts: implications for diagnosis and management. Clin. Infect. Dis. 2002;35(8):909–920. doi: 10.1086/342328
7. Roemer T., Krysan D.J. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med. 2014;4(5):a019703. doi: 10.1101/cshperspect.a019703
8. Sam Q.H., Yew W.S., Seneviratne C.J., Chang M.W., Chai L.Y.A. Immunomodulation as therapy for fungal infection: Are we closer? Front. Microbiol. 2018;9:1612. doi: 10.3389/fmicb.2018.01612
9. Assendorp E.L., Gresnigt M.S., Sprenkeler EG.G., Meis J.F., Dors N., van der Linden J.W.M., Henriet S.S.V. Adjunctive interferon-γ immunotherapy in a pediatric case of Aspergillus terreus infection. Eur. J. Clin. Microbiol. Infect Dis. 2018;7(10):1915–1922. doi: 10.1007/s10096-018-3325-4
10. Dutta O., Espinosa V., Wang K., Avina S., Rivera A. Dectin-1 promotes type I and III interferon expression to support optimal antifungal immunity in the lung. Front. Cell Infect. Microbiol. 2020;10:321. doi: 10.3389/fcimb.2020.00321
11. Li T., Liu Z., Zhang X., Chen X., Wang S. Therapeutic effectiveness of type I interferon in vulvovaginal candidiasis. Microb. Pathog. 2019;134:103562. doi: 10.1016/j.micpath.2019.103562
12. Maslennikova V.S., Tsvetkova V.P., Bedareva E.V., Kalmykova G.V., Dubovskii I.M. Growth-promoting, antioxidant, and fungicidal properties of endophytic bacteria Bacillus thuringiensis on potatoes infected with rhizoctonia root and stem rot. Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AIC. 2022;36(7):49–55. [In Russian]. doi: 10.53859/02352451_2022_36_7_49
13. Beklemishev A.B., Pykhtina M.B. Recombinant plasmid DNA encoding chimeric interferon alpha2b, recombinant yeast strain P. pastoris X33 – producer of chimeric interferon alpha2b and a method for producing the specified protein. Patent 2764787 RF; published 01.21.2022. [In Russian]
14. Smeekens S.P., Ng A., Kumar V., Johnson M.D., Plantinga T.S., van Diemen C., Arts P., Verwiel E.T.P., Gresnigt M.S., Fransen K., … Xavier R.J. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat. Commun. 2013;4:1342. doi: 10.1038/ncomms2343
15. Wang X., Cunha C., Grau M.S., Robertson S.J., Lacerda J.F., Campos A.Jr, Lagrou K., Maertens J., Best S.M., Carvalho A., Obar J.J. MAVS expression in alveolar macrophages is essential for host resistance against Aspergillus fumigatus. J. Immunol. 2022;209(2):346–353. doi: 10.4049/jimmunol.2100759
16. Liu J., Balasubramanian M.K. 1,3-beta-Glucan synthase: a useful target for antifungal drugs. Curr. Drug Targets. Infect. Disord. 2001;1(2):159–169. doi: 10.2174/1568005014606107
17. Marcel Y.L., Kiss R.S. Structure-function relationships of apolipoprotein A-I: a flexible protein with dynamic lipid associations. Curr. Opin. Lipidol. 2003;14(2):151–157. doi: 10.1097/00041433200304000-00006
18. Kuai R., Li D., Chen Y.E., Schwendeman A. High-density lipoproteins: nature’s multifunctional nanoparticles. ACS Nano. 2016;10(3):3015–3041. doi: 10.1021/acsnano.5b07522
19. Guimarães L.L., Toledo M.S., Ferreira F.A., Straus A.H., Takahashi H.K. Structural diversity and biological significance of glycosphingolipids in pathogenic and opportunistic fungi. Front. Cell. Infect. Microbiol. 2014;4:138. doi: 10.3389/fcimb.2014.00138
20. Malinsky J., Opekarová M., Grossmann G., Tanner W. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. Annu. Rev. Plant Biol. 2013;64:501–529. doi: 10.1146/annurev-arplant-050312-120103
21. Schnepf D., Staeheli P. License to kill: IFN-λ regulates antifungal activity of neutrophils. Sci. Immunol. 2017;2(17):eaap9614. doi: 10.1126/sciimmunol.aap9614
22. Gil-Lamaignere C., Winn R.M., Simitsopoulou M., Maloukou A., Walsh T.J., Roilides E. Inteferon gamma and granulocyte-macrophage colony-stimulating factor augment the antifungal activity of human polymorphonuclear leukocytes against Scedosporium spp.: comparison with Aspergillus spp. Med. Mycol. 2005;43(3):253–260. doi: 10.1080/13693780412331271072
Review
For citations:
Maslennikova V.S., Miroshnichenko C.M., Shelikhova E.V., Tabanyukhov K.A., Deulin I.Yu., Pykhtina M.B. Study of the fungicidal effect of the chimeric form of interferon alpha-2b in relation to fungi-pathogens of plants and animals. Сибирский научный медицинский журнал. 2023;43(6):130-137. (In Russ.) https://doi.org/10.18699/SSMJ20230616