Preview

Сибирский научный медицинский журнал

Advanced search

Mycobacterial infections: features of microbiological diagnosis

https://doi.org/10.18699/SSMJ20230604

Abstract

To date, more than 200 species of mycobacteria have been identified, in addition to the well-known Mycobacterium leprae and Mycobacterium tuberculosis. Among microorganisms belonging to the genus Mycobacterium, there are obligate pathogenic, opportunistic and saprophytic strains. The incidence of non-tuberculous or atypical mycobacteria, which cause opportunistic infections in humans and animals, is steadily increasing. Non-tuberculous mycobacteria are increasingly recognized as a source of healthcare-associated infections.

Aim of the study was to analyze the literature on current methods of microbiological diagnosis of mycobacterial infections.

Material and methods. A search and analysis of scientific literature in the Web of Science, PubMed, eLIBRARY.RU, Europe PMC databases was performed using the following key words: mycobacteriosis, non-tuberculous mycobacteria, mycobacterial infections, MALDITOF MS, atypical mycobacteria. Results and discussion. The review summarizes and presents the classification, morphological, cultural, genetic and ecological features of mycobacterial strains. Modern approaches in the diagnosis of mycobacterial diseases and identification of pathogens are analyzed; their advantages and disadvantages are indicated.

Conclusions. Mycobacterial infections are often considered as diseases associated with the provision of medical care, requiring a detailed assessment of the situation with the definition of criteria for microbiological monitoring of objects of a medical organization, etc. The analyzed literature data demonstrate a variety of methods for laboratory diagnosis of mycobacterial infections with the need for further improvement of methodological approaches.

About the Authors

A. V. Lutsenko
Astrakhan State Medical University of Minzdrav of Russia; Astrakhan State Technical University
Russian Federation

Anna V. Lutsenko - candidate of biological sciences.

414000, Astrakhan, Bakinskaya st., 121; 414056, Astrakhan, Tatishcheva st., 16/1



A. L. Yasenyavskaya
Astrakhan State Medical University of Minzdrav of Russia
Russian Federation

Anna L. Yasenyavskaya - candidate of medical sciences.

414000, Astrakhan, Bakinskaya st., 121



M. A. Samotrueva
Astrakhan State Medical University of Minzdrav of Russia
Russian Federation

Marina A. Samotrueva - doctor of medical sciences, professor.

414000, Astrakhan, Bakinskaya st., 121



References

1. Lyamin A.V., Zhestkov A.V., Ismatullin D.D., Kovalev A.M. Laboratory diagnostics of mycobacterioses. Vestnik sovremennoy klinicheskoy meditsiny = Bulletin of Contemporary Clinical Medicine. 2017;10(1):29–35. [In Russian]. doi: 10.20969/VSKM.2017.10(1).29-35

2. Fazylov V.Kh., Petrov I.V., Petrova L.V., Petrova F.S., Amirova T.Kh. Problems of laboratory diagnostics and identification of mycobacterium species: literature review. Infektsionnye bolezni: novosti, mneniya, obucheniye = Infectious Diseases: News, Opinions, Training. 2021;10(3-38):118–126. [In Russian]. doi: 10.33029/2305-3496-2021-10-3-118-126

3. Solomay T.V. Epidemiological features of mycobacterioses caused by nontuberculous mycobacteria. Sanitarnyy vrach = Sanitary Doctor. 2015;(3):30–36. [In Russian].

4. Riojas M.A., McGough K.J., Rider-Riojas C.J., Rastogi N., Hazbón M.H. Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. Int. J. Syst. Evol. Microbiol. 2018;68(1):324–332. doi: 10.1099/ijsem.0.002507

5. Pavlik I., Ulmann I., Hubelova D., Weston R.T. Nontuberculous mycobacteria as sapronoses: A review. Microorganisms. 2022;10(7):1345. doi: 10.3390/microorganisms10071345

6. Shah J.A., Lindestam Arlehamn C.S., Horne D.J., Sette A., Hawn T.R. Nontuberculous mycobacteria and heterologous immunity to tuberculosis. J. Infect. Dis. 2019;220(7):1091–1098. doi: 10.1093/infdis/jiz285

7. Munjal S., Munjal S., Gao J., Venketaraman V. Exploring potential COPD immunosuppression pathways causing increased susceptibility for MAC infections among COPD patients. Clin. Pract. 2021;11(3):619–630. doi: 10.3390/clinpract11030077

8. Mortaz E., Moloudizargari M., Varahram M., Movassaghi M., Garssen J., Kazempour Dizagie M., Mirsaeidi M., Adcock I.M. What immunological defects predispose to non-tuberculosis mycobacterial infections? Iran J. Allergy Asthma Immunol. 2018;17(2):100–109.

9. Honda J.R., Virdi R., Chan E.D. Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches. Front. Microbiol. 2018;9:2029. doi: 10.3389/fmicb.2018.02029

10. Hamada S., Ito Y., Hirai T., Murase K., Tsuji T., Fujita K., Mio T., Maekawa K., Fujii F., Ono S., … Mishima M. Impact of industrial structure and soil exposure on the regional variations in pulmonary nontuberculous mycobacterial disease prevalence. Int. J. Mycobacteriol. 2016;5(2):170–176. doi: 10.1016/j.ijmyco.2016.02.006

11. Johnson T.M., Byrd T.F., Drummond W.K., Childs-Kean L.M., Mahoney M.V., Pearson J.C., Rivera C.G. Contemporary pharmacotherapies for nontuberculosis mycobacterial infections: a narrative review. Infect. Dis. Ther. 2023:12(2):343–365. doi: 10.1007/s40121-022-00750-5

12. Wi Y.M. Treatment of extrapulmonary nontuberculous mycobacterial diseases. Infect. Chemother. 2019;51(3):245–255. doi: 10.3947/ic.2019.51.3.245

13. Bento C.M., Gomes M.S., Silva T. Looking beyond typical treatments for atypical mycobacteria. Antibiotics (Basel). 2020;9(1):18. doi: 10.3390/antibiotics9010018

14. Koh W.J. Nontuberculous mycobacteria – overview. Microbiol. Spectr. 2017;5(1). doi: 10.1128/microbiolspec.TNMI7-0024-2016

15. Zimina V.N., Degtyareva S.Yu., Beloborodova E.N., Kulabukhova E.I., Rusakova L.I., Fesenko O.V. A current state of mycobacterioses. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy. 2017;19 (4):276–282. [In Russian].

16. Prevots D.R., Loddenkemper R., Sotgiu G., Migliori G.B. Nontuberculous mycobacterial pulmonary disease: an increasing burden with substantial costs. Eur. Respir. J. 2017;49(4):1700374. doi: 10.1183/13993003.00374-2017

17. Petrov I.V., Amirova T.Kh., Petrova L.V., Petrova F.S., Sevastyanova E.V., Valiev R.I. Microbiological and epidemiological features of mycobacteriosis. Epidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccinal Prevention. 2020;19(3):89–94. [In Russian]. doi: 10.31631/2073-3046-2020-19-3-89-94

18. Delghandi M.R., El-Matbouli M., Menanteau-Ledouble S. Mycobacteriosis and infections with non-tuberculous mycobacteria in aquatic organisms: A review. Microorganisms. 2020;8(9):368. doi: 10.3390/microorganisms8091368

19. Forbes B.A., Hall G.S., Miller M.B., Novak S.M., Rowlinson M.C., Salfinger M., Somoskövi A., Warshauer D.M., Wilson M.L. Practical guidance for clinical microbiology laboratories: mycobacteria. Clin. Microbiol. Rev. 2018;31(2):e00038-17. doi: 10.1128/CMR.00038-17

20. Fedrizzi T., Meehan C.J., Grottola A., Giacobazzi E., Serpini G.F., Tagliazucchi S., Fabio A., Bettua C., Bertorelli R., de Sanctis V., … Segata N. Genomic characterization of nontuberculous mycobacteria. Sci. Rep. 2017;7:45258. doi: 10.1038/srep45258

21. Forbes B.A. Mycobacterial taxonomy. J. Clin. Microbiol. 2017;55(2):380–383. doi: 10.1128/jCM.01287-16

22. Pfyffer G.E. Mycobacterium: general characteristics, laboratory detection, and staining procedures. In: Manual of Clinical Microbiology. 11th Ed. ASM Press, 2015. P. 536–569. doi: 10.1128/9781555817381.ch30

23. Daffe M. The cell envelope of tubercle bacilli. Tuberculosis (Edinb). 2015;95(S1):S155–S158. doi: 10.1016/j.tube.2015.02.024

24. Vilcheze C., Kremer L. Acid-fast positive and acid-fast negative Mycobacterium tuberculosis: The Koch paradox. Microbiol. Spectr. 2017;5(2). doi: 10.1128/microbiolspec.tbtb2-0003-2015

25. Smolyaninov Yu.I., Volkov D.V., Ionina S.V., Brem A.K. Distribution and phenotypic properties of atypical mycobacteria isolated from pigs and environmental medium objects. Innovatsii i prodovol’stvennaya bezopasnost’ = Innovation and Food Safety. 2022;35(1):90–100. [In Russian]. doi: 10.31677/23110651-2022-35-1-90-100

26. Tran T., Dawrset S.N., Norton G.J., Virdi R., Honda J.R. Brought to you courtesy of the red, white, and blue–pigments of nontuberculous mycobacteria. AIMS Microbiol. 2020;6(4):434. doi: 10.3934/microbiol.2020026

27. de Martino M., Lodi L., Galli L., Chiappini E. Immune response to Mycobacterium tuberculosis: a narrative review. Front. Pediatr. 2019;(7):350. doi: 10.3389/fped.2019.00350

28. Jagielski T., Minias A., Ingen J., van Rastogi N., Brzostek A., Zaczek A., Dziadek J. Methodological and clinical aspects of the molecular epidemiology of Mycobacterium tuberculosis and other mycobacteria. Clin. Microbiol. Rev. 2016;29(2):239–290. doi: 10.1128/CMR.00055-15

29. World Health Organization. 2014. Global tuberculosis report 2014 (WHO/HTM/TB/2014.08). Available at: https://apps.who.int/iris/bitstream/handle/10665/137094/9789241564809_eng.pdf

30. Sharma R., Singh P., McCoy R.C., Lenz S.M., Donovan K., Ochoa M.T., Estrada-Garcia I., SilvaMiranda M., Jurado-Santa Cruz F., Balagon M.F., … Adams L.B. Isolation of Mycobacterium lepromatosis and development of molecular diagnostic assays to distinguish Mycobacterium leprae and M. lepromatosis. Clin. Inf. Dis. 2020;71(8):e262–e269. doi: 10.1093/cid/ciz1121

31. Sotiriou M.C., Stryjewska B.M., Hill C. Case report: two cases of leprosy in siblings caused by Mycobacterium lepromatosis and review of the literature. Am. J. Trop. Med. Hyg. 2016;95(3):522. doi: 10.4269/ajtmh.16-0076

32. Scollard D.M. Infection with Mycobacterium lepromatosis. Am. J. Trop. Med. Hyg. 2016;95(3):500– 501. doi: 10.4269/ajtmh.16-0473

33. Gurung P., Gomes C.M., Vernal S., Leeflang M.M.G. Diagnostic accuracy of tests for leprosy: a systematic review and meta-analysis. Clin. Microbiol. Infect. 2019;25(11):1315–1327. doi: 10.1016/j.cmi.2019.05.020

34. van Ingen J. Diagnosis of nontuberculous mycobacterial infections. Seminars in respiratory and critical care medicine. Semin. Respir. Crit. Care. Med. 2013;34(1):103–109. doi: 10.1055/s-0033-1333569

35. Turenne C.Y. Nontuberculous mycobacteria: insights on taxonomy and evolution. Infect. Genet. Evol. 2019;72:159–168. doi: 10.1016/j.meegid.2019.01.017

36. Davidovich N., Morick D., Carella F. Mycobacteriosis in aquatic invertebrates: A review of its emergence. Microorganisms. 2020;8(8):1249. doi: 10.3390/microorganisms8081249

37. Carella F., Aceto S., Pollaro F., Miccio A., Iaria C., Carrasco P.P., Prado P., de Vico G. A mycobacterial disease is associated with the silent mass mortality of the pen shell Pinna nobilis along the Tyrrhenian coastline of Italy. Sci. Rep. 2019;9(1):2725. doi: 10.1038/s41598-018-37217-y

38. Davidovich N., Pretto T., Blum S.E., Baider Z., Grossman R., Kaidar-Shwartz H., Dveyrin Z., Rorman E. Mycobacterium gordonae infecting redclaw crayfish Cherax quadricarinatus. Dis. Aquat. Organ. 2019;135(2):169–174. doi: 10.3354/dao03392

39. Esteban J., Garcia-Coca M. Mycobacterium Biofilms. Front. Microbiol. 2018;(8):2651. doi: 10.3389/fmicb.2017.02651

40. Ichijo T., Izumi Y., Nakamoto S., Yamaguchi N., Nasu M. Distribution and respiratory activity of mycobacteria in household water system of healthy volunteers in Japan. PLoS One. 2014;9(10):e110554. doi: 10.1371/journal.pone.0110554

41. Tortoli E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin. Microbiol. Rev. 2014;27(4):727–752. doi: 10.1128/CMR.00035-14

42. Sevastyanova E.V., Larionova E.E., Andrievskaya I.Yu. Microscopic detection of mycobacteria by Ziehl-Neelsen staining technique. Vestnik Tsentral’nogo nauchno-issledovatel’skogo instituta tuberkuleza = CTRI Bulletin. 2019;(1):100–108. [In Russian]. doi: 10.7868/S2587667819010114

43. Caulfield A.J., Wengenack N.L. Diagnosis of active tuberculosis disease: From microscopy to molecular techniques. J. Clin. Tuberc. Other Mycobact .Dis. 2016;(4):33–43. doi: 10.1016/j.jctube.2016.05.005

44. Singhal R., Myneedu V.P. Microscopy as a diagnostic tool in pulmonary tuberculosis. Int. J. Mycobacteriol. 2015;4(1):1–6. doi: 10.1016/j.ijmyco.2014.12.006

45. Kovalchuk A.V., Eremenko E.P., Kuznetsova A.N., Rogozhkin P.V., Inkova E.P. Methods for diagnosing of drug resistancein in Mycobacterium tuberculosis. Meditsinskaya sestra = The Nurse. 2019;21(8):7–9. [In Russian]. doi: 10.29296/25879979-2019-08-02

46. Rodionova Yu.D., Gusyakova O.A., Lyamin A.V., Borodulina E.A., Kozlov A.V. Evaluation of the influence of sputum storage conditions on the vital properties of Mycobacterium tuberculosis. Tuberkulez i bolezni legkikh = Tuberculosis and Lung Diseases. 2017;95(1):42–46. [In Russian]. doi: 10.21292/20751230-2017-95-1-42-46

47. Pavlova I.B., Lenchenko E.M., Antonova A.N. Study of morphology of microbacterial population by methods of optical and electronic microscopy. Rossiyskiy zhurnal «Problemy veterinarnoi sanitarii, gigieny i ecologii» = Russian Journal «Problems on Veterinary Sanitation, Hygiene and Ecology». 2017;(4):76–82. [In Russian].

48. Nuratinov R.A. Ecological conditions for the existence mycobacteria populations. Yug Rossii: ekologiya, razvitiye = South of Russia: Ecology, Development. 2014;9(2):18–30. [In Russian].

49. Larionova E.E., Andrievskaya I.Yu., Andreevskaya S.N., Smirnova T.G., Sevastyanova E.V. The culture method for mycobacteria studies. Solid growth media. Vestnik Tsentral’nogo nauchno-issledovatel’skogo instituta tuberkuleza = CTRI Bulletin. 2020;(3):75–86. [In Russian]. doi: 10.7868/S2587667820030103

50. Chang E.W., Page A.L., Bonnet M. Light-emitting diode fluorescence microscopy for tuberculosis diagnosis: a meta-analysis. Eur. Resp. J. 2016;47(3):929– 937. doi: 10.1183/13993003.00978-2015

51. Usmonov I., Shukurov U. Features of the clinical course, the state of diagnosis and treatment of hiv-associated pulmonary tuberculosis in modern conditions literature review. An. of the Roman. Soc. for Cell Biol. 2021;25(4):1809–1828.

52. Rageade F., Picot N., Blanc-Michaud A., Chatellier S., Mirande C., Fortin E., van Belkum A. Performance of solid and liquid culture media for the detection of Mycobacterium tuberculosis in clinical materials: Meta-analysis of recent studies. Eur. J. Clin. Microbiol. Infect. Dis. 2014;33(6):867–870. doi: 10.1007/s10096014-2105-z

53. Nogueira L.B., Garcia C.N., Costa M.S.C.D., Moraes M.B., Kurizky P.S., Gomes C.M. Non-tuberculous cutaneous mycobacterioses. An. Bras. Dermatol. 2021;96(5):527–538. doi: 10.1016/j.abd.2021.04.005

54. Petrov I.V., Amirova T.Kh., Petrova L.V., Petrova F.S. Mycobacteriosis as a healthcare-associated infection: a review of epidemiological studies. Zdorov’ye naseleniya i sreda obitaniya = Public Health and Life Environment. 2020;(7):37–41. [In Russian]. doi: 10.35627/2219-5238/2020-328-7-37-41

55. Atlas R.M., Snyder J.W. Handbook of media for clinical and public health microbiology. Boca Raton: СRC Press, 2013; 561 p. doi: 10.1201/b15973

56. Preece C.L., Wichelhaus T.A., Perry A., Jones A.L., Cummings S.P., Perry J.D., Hogardt M. Evaluation of various culture media for detection of rapidly growing mycobacteria from patients with cystic fibrosis. J. Clin. Microbiol. 2016;54(7):1797–1803. doi: 10.1128/JCM.00471-16

57. Somoskovi A., Salfinger M. Nontuberculous mycobacteria in respiratory infections: advances in diagnosis and identification. Clin. Lab. Med. 2014;34(2):271–295. doi: 10.1016/j.cll.2014.03.001

58. Sviridenko N.A., Boganets N.S., Appelgants L.T. Possibilities to improve the efficiency of cultural methods for isolation of Mycobacterium tuberculosis. Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AIC. 2015;29(4):51–52. [In Russian].

59. Sevastyanova E.V., Larionova E.E., Smirnova T.G., Andrievskaya I.Yu., Andreevskaya S.N., Chernousova L.N. Evaluation of the results of mycobacterium detection, obtained by different studies methods. Meditsinskiy al’yans =Medical Alliance. 2018;(3):25–30. [In Russian].

60. Yashin Ya.I., Yashin A.Ya. High-speed HPLC (brief review). Sorbtsionnyye i khromatograficheskiye protsessy = Sorption and Chromatographic Processes. 2022;22(1):6–11. [In Russian]. doi: 10.17308/sorpchrom.2022.22/9015

61. Tortoli E. Phylogeny of the genus Mycobacterium: many doubts, few certainties. Infect. Genet. Evol. 2012;12(4):827–831. doi: 10.1016/j.meegid.2011.05.025

62. Ryu Y.J. Diagnosis of pulmonary tuberculosis: recent advances and diagnostic algorithms. Tuberc. Respir. Dis. (Seoul). 2015;78(2):64–71. doi: 10.4046/trd.2015.78.2.64

63. Dobin V.L. Understanding of Mycobacterium tuberculosis evolution. Tuberkulez i bolezni legkikh = Tuberculosis and Lung Diseases. 2018;96(8):59–65. [In Russian]. doi: 10.21292/2075-1230-2018-96-8-59-65

64. Bolaños C.A.D., Paula C.L., Guerra S.T., Franco M.M.J., Ribeiro M.G. Diagnosis of mycobacteria in bovine milk: an overview. Rev. Inst. Med. Trop. Sao Paulo. 2017;(59):e40. doi: 10.1590/S16789946201759040

65. Cudahy P., Shenoi S.V. Diagnostics for pulmonary tuberculosis. Postgrad. Med. J. 2016;92(1086):187–193. doi: 10.1136/postgradmedj-2015-133278

66. Weyer K., Mirzayev F., Migliori G.B., van Gemert W., D’Ambrosio L., Zignol M., Floyd K., Centis R., Cirillo D.M., … Raviglione M. Rapid molecular TB diagnosis: evidence, policymaking and global implementation of Xpert MTB/RIF. Eur. Respir. J. 2013;42(1):252–271. doi: 10.1183/09031936.00157212

67. Carbonnelle E., Mesquita C., Bille E., Day N., Dauphin B., Beretti J.L., Ferroni A., Gutmann L., Nassif X. MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin. Biochem. 2011;44(1):104–109. doi: 10.1016/j.clinbiochem.2010.06.017

68. Neuschlova M., Vladarova M., Kompanikova J., Sadlonova V., Novakova E. Identification of Mycobacterium species by MALDI-TOF mass spectrometry. Adv. Exp. Med. Biol. 2017;10(1):37–42. doi: 10.1007/5584_2017_26

69. Rychert J. Benefits and limitations of MALDI-TOF mass spectrometry for the identification of microorganisms. J. Inf. Epidem. 2019;2(4):1–5. doi: 10.29245/2689-9981/2019/4.1142

70. Tan K.E., Ellis B.C., Lee R., Stamper P.D., Zhang S.X., Carroll K.C. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: A bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J. Clin. Microbiol. 2012;50(10):3301–3308. doi: 10.1128/JCM.01405-12

71. Lyamin A.V., Ismatullin D.D. Mycobacterioses: features of epidemiology and laboratory diagnostics. Aspirantskiy vestnik Povolzh’ya = Postgraduate Bulletin of the Volga Region. 2016;(5-6):204–208. [In Russian].


Review

For citations:


Lutsenko A.V., Yasenyavskaya A.L., Samotrueva M.A. Mycobacterial infections: features of microbiological diagnosis. Сибирский научный медицинский журнал. 2023;43(6):34-44. (In Russ.) https://doi.org/10.18699/SSMJ20230604

Views: 1225


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)