A new aspect of metabolic disorders in obesity: carbonyl stress
https://doi.org/10.18699/SSMJ20230603
Abstract
The literature review examines the problem of obesity in modern society. It has been shown that obesity aggravates concomitant diseases, increases the probability of developing metabolic disorders and related pathologies, increases the risk of complications and mortality. The secretory function of adipose tissue, its participation in the regulation of biological processes is considered in detail. The concept of carbonyl stress and its components is revealed, the role of carbonyl compounds in the body is described, the metabolic pathways leading to the formation of carbonyl reaction products are shown, the participation of free radicals in these metabolic pathways is noted. The mechanisms of pathogenesis associated with the development of carbonyl stress in obesity are discussed; the greatest contribution to the development of car bonyl pathology in obesity is made by two types of processes: lipid peroxidation reactions resulting in the formation of carbonyl products of lipoperoxidation and the processes activated by hyperglycemia (glycolysis, polyol and hexоzamine pathways) leading to the formation of glyoxal, methylglyoxal, and active carbonyl forms of glucose. The question of the contribution of advanced glycation end products (AGEs) and advanced oxidation protein products (AOРР) to the development of carbonyl pathology in obesity remains controversial. It is assumed that AGEs and AOРР levels depend on the severity of obesity and the development of metabolic syndrome.
About the Authors
A. S. LesnayaRussian Federation
Anastasiya S. Lesnaya - candidate of biological sciences.
664003, Irkutsk, Timiryazeva st., 16
M. A. Darenskaya
Russian Federation
Marina A. Darenskaya - doctor of biological sciences, professor.
664003, Irkutsk, Timiryazeva st., 16
N. V. Semenova
Russian Federation
Natalya V. Semenova - doctor of biological sciences.
664003, Irkutsk, Timiryazeva st., 16
L. I. Kolesnikova
Russian Federation
Lyubov I. Kolesnikova - doctor of medical sciences, academician of the RAS.
664003, Irkutsk, Timiryazeva st., 16; 664003, Irkutsk, Karla Marksa st., 1
References
1. Demidova T.Yu., Volkova E.I., Gritskevich E.Yu. Peculiarities of the COVID-19 course and consequences in overweight and obese patients. Lessons from the current pandemic. Ozhireniye i metabolism = Obesity and Metabolism. 2020;17(4):375–384. [In Russian]. doi: 10.14341/omet12663
2. Kravchuk E.N., Neimark A.E., Babenko A.Yu., Grineva E.N. Obesity and COVID-19. Arterial’naya gipertenziya = Arterial Hypertension. 2020;26(4):440– 446. [In Russian]. doi: 10.18705/1607-419X-2020-264-440-446
3. Dvoretskii L.I. Obesity and infection. Another comorbidity? Ozhireniye i metabolism = Obesity and Metabolism. 2019;16(2):3–8. [In Russian]. doi: 10.14341/omet9745
4. Leskova I.V., Ershova E.V., Nikitina E.A., Krasnikovskii V.Ya., Ershova Yu.A., Adamskaya L.V. Obesity in Russia: modern view in the light of a social problems. Ozhireniye i metabolism = Obesity and Metabolism. 2019;16(1):20–26. [In Russian]. doi: 10.14341/omet9988
5. Drapkina O.M., Lopatin Yu.M., Petrov V.I., Tkacheva O.N., Chumakova G.A., Shlyakhto E.V., Nedogoda S.V., Konradi A.O., Arutyunov G.P. Diagnosis, treatment, prevention of obesity and associated diseases (national clinical guidelines). Saint Petersburg, 2017. 164 p. [In Russian].
6. Dedov I.I., Shestakova M.V., Mel’nichenko G.A., Mazurina N.V., Andreeva E.N., Bondarenko I.Z., Gusova Z.R., Dzgoeva F.Kh., Eliseev M.S., Ershova E.V., … Sheremet’eva E.V. Interdisciplinary clinical practice guidelines “Management of obesity and its comorbidities”. Ozhireniye i metabolism = Obesity and Metabolism. 2021;18(1):5–99. [In Russian]. doi: 10.14341/omet12714
7. Dzugkoev S.G., Dzugkoeva F.S., Mozhaeva I.V., Margieva O.I. Adipokines, obesity and metabolic disorders. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2020;6:201. [In Russian]. doi: 10.17513/spno.30321
8. Alferova V.I., Mustafina S.V. The role of adipokines in the development of cardiometabolic disorders in humans. Ateroscleroz = Atherosclerosis. 2023;18(4):388–394. [In Russian]. doi: 10.52727/2078256X-2022-18-4-388-394
9. Lavrenova E.A., Drapkina O.M. Insulin resistance in obesity: pathogenesis and effects. Ozhireniye i metabolism = Obesity and Metabolism. 2020;17(1):48– 55. [In Russian]. doi: 10.14341/omet9759
10. Ryabova E.A., Ragino Yu.I. Proinflammatory adipokines and cytokines in abdominal obesity as a factor in the development of atherosclerosis and renal pathology. Ateroscleroz = Atherosclerosis. 2021;17(4):101–110. [In Russian]. doi: 10.52727/2078256X-2021-17-4-101-110
11. Rashidova M.A., Darenskaya M.A., Kolesnikova L.I. The role of some cytokines (IL-1, IL-6, IL-18, IL-22, TNF-α) in the genesis of obesity. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2022;6-2:42. [In Russian]. doi: 10.17513/spno.32339
12. Pavlova Z.Sh., Golodnikov I.I., Orlova Ya.A., Kamalov A.A. The prevalence of hyperestrogenism and testosterone deficiency in obese men. Endokrinologiya: novosti, mneniya, obucheniye = Endocrinology: News, Opinions, Training. 2021;10(2):41–47. [In Russian]. doi: 10.33029/2304-9529-2021-10-2-41-47
13. Anikin D.A., Solov’eva I.A., Demko I.V., Sobko E.A., Kraposhina A.Yu., Gordeeva N.V. Free-radical oxidation as a pathogenetic factor of metabolic syndrome. Ozhireniye i metabolism = Obesity and Metabolism. 2022;19(3):306–316. [In Russian]. doi: 10.14341/omet12804
14. Osipova A.A. The role of leptin in the regulation of energy metabolism and the functioning of living organisms. Okruzhayushchaya sreda i energovedeniye = Journal of Environmental Earth and Еnergy Study. 2019;(2):55–82. [In Russian]. doi: 10.5281/zenodo.3328788
15. Lyons T.J., Jenkins A.J. Glycation, oxidation, and lipoxidation in the development of the complications of diabetes: a carbonyl stress hypothesis. Diabetes Rev. 1997;5(4):365–391.
16. Dham D., Roy B., Gowda A., Pan G., Sridhar A., Zeng X., Thandavarayan R.A., Palaniyandi S.S. 4-Hydroxy-2-nonenal, a lipid peroxidation product, as a biomarker in diabetes and its complications: challenges and opportunities. Free Radic. Res. 2021;55(5):547– 561. doi: 10.1080/10715762.2020.1866756
17. Savina K.V., Grechun A.A. 4-hydroxy-trans2-nonenal is a signaling biomarker of oxidative stress processes in lipid peroxidation. Innovative development and the potential of modern science: proc. conf., February 14, 2022, Prague. Neftekamsk: World of Science, 2022. P. 19–23. [In Russian].
18. Kosmachevskaya O.V., Shumaev K.B., Topunov A.F. Electrophilic signaling: the role of active carbonyl compounds. Biochemistry (Moscow). 2019; 84:206–224. doi: 10.1134/S0006297919140128
19. Sarkisyan V.A., Kochetkova A.A., Bessonov V.V., Glazkova I.V. Toxicological characteristics of the main products of lipid oxidation. Voprosy pitaniya = Problems of Nutrition. 2016;85(6):80–85. [In Russian].
20. Emel’yanov V.V. Glycation, antiglycation and deglycation: Their role in aging mechanisms and geroprotective effects (literature review). Adv. Gerontol. 2017;(7):1–9. [In Russian]. doi: 10.1134/S2079057017010064
21. Davydov V.V., Bozhkov A.I. Carbonyl stress as a nonspecific factor of pathogenesis (review of literature and own research). Zhurnal Natsionalʹnoyi akademii medychnykh nauk Ukrayiny = Journal of the National Academy of Medical Sciences of Ukraine. 2014;20(1):25–34. [In Russian].
22. Nedosugova L.V. Role of the endocrine system in maintaining glucose homeostasis in health and disease. Russkiy meditsinskiy zhurnal. Meditsinskoye obozreniye = Russian Medical Journal. Medical Review. 2021;5(9):586–591. [In Russian]. doi: 10.32364/25876821-2021-5-9-586-591
23. Brichagina A.S., Semenova N.V., Kolesnikova L.I. Age-related menopause and carbonyl stress. Uspekhi gerontologii = Advances in Gerontology. 2022;35(2):206–213. [In Russian]. doi: 10.34922/AE.2022.35.2.004
24. Lysenko V.I. Oxidative stress as a non-specific factor of organ damage pathogenesis (review of literature and own data). Meditsina neotlozhnykh sostoyaniy = Emergency Medicine. 2020;16(1):24–35. [In Russian]. doi: 10.22141/2224-0586.16.1.2020.196926
25. Choromanska B., Mysliwiec P., Dadan J., Maleckas A., Zalewska A., Maciejczyk M. Effects of age and gender on the redox homeostasis of morbidly obese people. Free Radic. Biol. Med. 2021;175:108–120. doi: 10.1016/j.freeradbiomed.2021.08.009
26. Szewczyk-Golec K., Rajewski P., Gackowski M., Mila-Kierzenkowska C., Wesołowski R., Sutkowy P., Pawłowska M., Woźniak A. Melatonin supplementation lowers oxidative stress and regulates adipokines in obese patients on a calorie-restricted diet. Oxid. Med. Cell. Longev. 2017;2017:8494107. doi: 10.1155/2017/8494107
27. Gutiérrez L., García J.R., Rincón Mde J., Ceballos G.M., Olivares I.M. Effect of a hypocaloric diet in the oxidative stress in obese subjects without prescription of exercise and antioxidants. Med. Clin. (Barc). 2015;145(1):1–6. doi: 10.1016/j.medcli.2013.12.015
28. Klisic A., Malenica M., Kostadinovic J., Kocic G., Ninic A. Malondialdehyde as an independent predictor of body mass index in adolescent girls. J. Med. Biochem. 2023;42(2):224–231. doi: 10.5937/jomb0-39044
29. Albuali W.H. Evaluation of oxidant-antioxidant status in overweight and morbidly obese Saudi children. World J. Clin. Pediatr. 2014;3(1):6–13. doi: 10.5409/wjcp.v3.i1.6
30. Nikishova T.V., Kurnikova I.A. Indicators of lipid peroxidation and the activity of antioxidant system enzymes as predictors of the development of metabolic disorders in primary obesity. Kazanskiy meditsinskiy zhurnal = Kazan Medical Journal. 2021;102(5):765– 772. [In Russian]. doi: 10.17816/KMJ2021-765
31. Vorob’eva E.N., Simonova G.I., Vorob’ev R.I., Leshchenko I.Zh. Free radical oxidation and atherosclerosis. Ateroskleroz = Atherosclerosis. 2010;6(2):20–27. [In Russian].
32. Darenskaya M.A., Gavrilova O.A., Grebenkina L.A., Kravtsova O.V., Natyaganova L.V. The state of lipoperoxidation processes in boys with obesity. Acta Biomedica Scientifica. 2017;2(5-2):28–32. [In Russian]. doi: 10.12737/article_5a3a0d764250a4.87243362
33. Povarova O.V., Gorodetskaya E.A., Kalenikova E.I., Medvedev O.S. Metabolic markers and oxidative stress in children’s obesity pathogenesis. Rossiyskiy vestnik perinatologii i pediatrii = Russian Bulletin of Perinatology and Pediatrics. 2020;65(1):22–29. [In Russian]. doi: 10.21508/1027-4065-2020-65-1-22-29
34. Koshel’skaya O.A., Naryzhnaya N.V., Kologrivova I.V., Suslova T.E., Kharitonova O.A., Evtushenko V.V., Andreev S.L., Gorbunov A.S., Gudkova A.A. The level of reactive oxygen species production by adipocytes of epicardial adipose tissue is associated with an increase in postprandial glycemia in patients with severe coronary atherosclerosis. Sibirskiy zhurnal klinicheskoy i eksperimental’noy meditsiny = Siberian Journal of Clinical and Experimental Medicine. 2021;36(3):59–67. [In Russian]. doi: 10.29001/20738552-2021-36-3-59-67
35. Venturini D., Simаo A.N., Scripes N.A., Bahls L.D., Melo P.A., Belinetti F.M., Lozovoy M.A., Dichi I. Evaluation of oxidative stress in overweight subjects with or without metabolic syndrome. Obesity (Silver Spring). 2012; 20(12): 2361–2366. doi: 10.1038/oby.2012.130
36. Danilova L.A. Glycated proteins. Pediatr = Pediatrician. 2019;10(5):79–86. [In Russian]. doi: 10.17816/PED10579-86
37. Masania J., Malczewska-Malec M., Razny U., Goralska J., Zdzienicka A., Kiec-Wilk B., Gruca A., Stancel-Mozwillo J., Dembinska-Kiec A., Rabbani N., Thornalley P.J. Dicarbonyl stress in clinical obesity. Glycoconj. J. 2016;33(4):581–589. doi: 10.1007/S10719-016-9692-0
38. Bettiga A., Fiorio F., di Marco F., Trevisani F., Romani A., Porrini E., Salonia A., Montorsi F., Vago R. The modern western diet rich in advanced glycation end-products (AGEs): аn overview of its impact on obesity and early progression of renal pathology. Nutrients. 2019;11(8):1748. doi: 10.3390/nu11081748
39. Uribarri J., Cai W., Woodward M., Tripp E., Goldberg L., Pyzik R., Yee K., Tansman L., Chen X., Mani V., Fayad Z.A., Vlassara H. Elevated serum advanced glycation endproducts in obese indicate risk for the metabolic syndrome: a link between healthy and unhealthy obesity? J. Clin. Endocrinol. Metab. 2015;100(5):1957–1966. doi: 10.1210/jc.2014-3925
40. Gaens K.H.J., Goossens G.H., Niessen P.M., van Greevenbroek M.M., van der Kallen C.J., Niessen H.W., Rensen S.S., Buurman W.A., Greve J.W.M., Blaak E.E., … Schalkwijk C.G. Nε-(carboxymethyl) lysine-receptor for advanced glycation end product axis is a key modulator of obesity-induced dysregulation of adipokine expression and insulin resistance. Arterioscler. Thromb. Vasc. Biol. 2014;34(6):1199–1208. doi: 10.1161/ATVBAHA.113.302281
41. Sebekova K., Somoza V., Jarcuskova M., Heidland A., Podracka L. Plasma advanced glycation end products are decreased in obese children compared with lean controls. Int. J. Pediatr. Obes. 2009;4(2):112–118. doi: 10.1080/17477160802248039
42. Krzystek-Korpacka M., Patryn E., Boehm D., Berdowska I., Zielinski B., Noczynska A. Advanced oxidation protein products (AOPPs) in juvenile overweight and obesity prior to and following weight reduction. Clin. Biochem. 2008;41(12):943–949. doi: 10.1016/j.clinbiochem.2008.04.024
43. Morelli N.R., Scavuzzi B.M., Miglioranza L.H.D.S., Lozovoy M.A.B., Simаo A.N.C., Dichi I. Metabolic syndrome components are associated with oxidative stress in overweight and obese patients. Arch. Endocrinol. Metab. 2018;62(3):309–318. doi: 10.20945/2359-3997000000036
44. Caimi G., Canino B., Montana M., Urso C., Calandrino V., Presti R.L., Hopps E. Lipid рeroxidation, рrotein оxidation, gelatinases, and their inhibitors in a group of adults with obesity. Horm. Metab. Res. 2019;51(6):389–395. doi: 10.1055/a-0887-2770
45. Corica D., Aversa T., Ruggeri R.M., Cristani M., Alibrandi A., Pepe G., de Luca F., Wasniewska M. Could AGE/RAGE-related oxidative homeostasis dysregulation enhance susceptibility to pathogenesis of cardio-metabolic complications in childhood obesity? Front. Endocrinol. (Lausanne). 2019;10:426. doi: 10.3389/fendo.2019.00426