Diabetic ketoacidosis and oxidative stress: pathophysiological mechanisms
https://doi.org/10.18699/SSMJ20230601
Abstract
Diabetes mellitus (DM) is a common endocrine disease with a large number of acute and chronic complications, among which diabetic ketoacidosis (DKA) is the most frequent and severe, especially in children and adolescents with type 1 DM. Oxidative stress (OS) is a pathological condition that develops due to an imbalance between free radicals formation and inefficiency of the antioxidant system. OS is a strong risk factor for the development of numerous diabetic complications. Recently OS has been considered as an important component of DKA, the pathophysiological mechanisms of which have not yet been fully elucidated. This paper describes hypotheses according to which OS not only triggers and exacerbates manifestations of DKA, but itself represents a severe consequence of DKA, leading to the progression of numerous micro- and macroscopic diabetic complications. The formation of glycation end products, activation of protein kinase C, polyol and hexosamine pathways are considered among the key pathophysiologic mechanisms of OS development in DKA. Achieving a better understanding of OS pathogenesis in DKA will optimize the diagnosis of OS and approaches to DKA correction through timely prescription of antioxidants.
About the Author
Yu. V. BykovRussian Federation
Yuri V. Bykov, candidate of medical sciences.
355017, Stavropol, Mira st., 310; 355002, Stavropol, Ponomareva st., 5
References
1. Pasupuleti V.R., Arigela C.S., Gan S.H., Salam S.K.N., Krishnan K.T., Rahman N.A., Jeffree M.S. A review on oxidative stress, diabetic complications, and the roles of honey polyphenols. Oxid. Med. Cell. Longev. 2020;2020:8878172. doi: 10.1155/2020/8878172
2. Black H.S. A synopsis of the associations of oxidative stress, ROS, and antioxidants with diabetes mellitus. Antioxidants (Basel). 2022;11(10):2003. doi: 10.3390/antiox11102003
3. Papachristoforou E., Lambadiari V., Maratou E., Makrilakis K. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J. Diabetes Res. 2020;2020:7489795. doi: 10.1155/2020/7489795
4. Li J., Shen X. Leptin concentration and oxidative stress in diabetic ketoacidosis. Eur. J. Clin. Invest. 2018;48(10):e13006. doi: 10.1111/eci.13006
5. Li J., Shen X. Oxidative stress and adipokine levels were significantly correlated in diabetic patients with hyperglycemic crises. Diabetol. Metab. Syndr. 2019;11:13. doi: 10.1186/s13098-019-0410-5
6. Mayer-Davis E.J., Lawrence J.M., Dabelea D., Divers J., Isom S., Dolan L., Imperatore G., Linder B., Marcovina S., Pettitt D.J., … SEARCH for Diabetes in Youth Study. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N. Engl. J. Med. 2017;376(15):1419–1429. doi: 10.1056/NEJMoa1610187
7. Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N., Colagiuri S., Guariguata L., Motala A.A., Ogurtsova K., … IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019;157:107843. doi: 10.1016/j.diabres.2019.107843
8. American Diabetes Association. 4. Comprehensive medical evaluation and assessment of comorbidities: standards of medical care in diabetes-2020. Diabetes care. 2019;43(Suppl 1):S37–S47. doi: 10.2337/dc20-S004
9. Baynest H.W. Classification, pathophysiology, diagnosis and management of diabetes mellitus. Journal of Diabetes & Metabolism. 2015;6(5):1–9. doi: 10.4172/2155-6156.1000541
10. Bommer C., Heesemann E., Sagalova V., Manne-Goehler J., Atun R., Bärnighausen T., Vollmer S. The global economic burden of diabetes in adults aged 20–79 years: a cost-of-illness study. Lancet Diabetes Endocrinol. 2017;5(6):423–430. doi: 10.1016/S2213-8587(17)30097-9
11. Bykov Yu.V., Baturin V.A. Cognitive impairment in type 1 diabetes mellitus. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2023;43(1):4–12. [In Russian]. doi: 10.18699/SSMJ20230101
12. Bykov Yu.V. Diabetic ketoacidosis in children and adolescents: from pathophysiology to prevention. Zabaykal’skiy meditsinskiy vestnik = The Transbaikalian Medical Bulletin. 2021;(2);85–95. [In Russian]. doi: 10.52485/19986173_2021_2_85
13. Yaribeygi H., Sathyapalan T., Atkin S.L., Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell. Longev. 2020;2020:8609213. doi: 10.1155/2020/8609213
14. Yaribeygi H., Farrokhi F.R., Butler A.E., Sahebkar A. Insulin resistance: review of the underlying molecular mechanisms. J. Cell. Physiol. 2019;234(6):8152–8161. doi: 10.1002/jcp.27603
15. Ziegler R., Neu A. Diabetes in childhood and adolescence. Dtsch. Arztebl. Int. 2018;115(9):146–156. doi: 10.3238/arztebl.2018.0146
16. Otal Y., Kahraman F.A., Haydar F.G., Erel Ö. Dynamic thiol/disulfide homeostasis as oxidative stress marker in diabetic ketoacidosis. Turk. J. Med. Sci. 2021;51(2):743–748. doi: 10.3906/sag-1904-55
17. Bykov Yu.V., Baturin V.A. Pathophysiological mechanisms of cerebral edema in diabetic ketoacidosis in children’s practice. Meditsina = Medicine. 2021;(1):116–127. [In Russian]. doi: 10.29234/23089113-2021-9-1-116-127
18. Misra S., Oliver N.S. Diabetic ketoacidosis in adults. BMJ. 2015;351:h5660. doi: 10.1136/bmj.h5660
19. Aldhaeefi M., Aldardeer N.F., Alkhani N., Alqarni S.M., Alhammad A.M., Alshaya A.I. Updates in the management of hyperglycemic crisis. Front. Clin. Diabetes Healthc. 2022;2:820728. doi: 10.3389/fcdhc.2021.820728
20. Barski L., Golbets E., Jotkowitz A., Schwarzfuchs D. Management of diabetic ketoacidosis. Eur. J. Intern. Med. 2023;S0953–6205(23)00231-5. doi: 10.1016/j.ejim.2023.07.005
21. Mays J.A., Jackson K.L., Derby T.A., Behrens J.J., Goel S., Molitch M.E., Kho A.N., Wallia A. An evaluation of recurrent diabetic ketoacidosis, fragmentation of care, and mortality across Chicago, Illinois. Diabetes Care. 2016;39(10):1671–1676. doi: 10.2337/dc16-0668
22. Rugg-Gunn C.E., Deakin M., Hawcutt D.B. Update and harmonisation of guidance for the management of diabetic ketoacidosis in children and young people in the UK. BMJ Paediatr. Open. 2021;5(1):e001079. doi: 10.1136/bmjpo-2021-001079
23. Karslioglu French E., Donihi A.C., Korytkowski M.T. Diabetic ketoacidosis and hyperosmolar hyperglycemic syndrome: review of acute decompensated diabetes in adult patients. BMJ. 2019;365:I1141. doi: 10.1136/bmj.l1114
24. Fayfman M., Pasquel F.J., Umpierrez G.E. Management of hyperglycemic crises. Med. Clinics. North. Am. 2017;101(3):587–606. doi: 10.1016/j.mcna.2016.12.011
25. Inci K., Gokcen T., Aylin B., Serdar U. Acute hyperglycemia causes oxidative stress which is prevented by vitamin E pretreatment in healthy rabbits. Journal of Research in Pharmacy. 2022; 26(3):534– 542. doi:10.29228/jrp.150
26. Asmat U., Abad K., Ismail K. Diabetes mellitus and oxidative stress – A concise review. Saudi Pharm. J. 2016;24(5):547–553. doi: 10.1016/j.jsps.2015.03.013
27. Yaribeygi H., Farrokhi F.R., Rezaee R., Sahebkar A. Oxidative stress induces renal failure: a review of possible molecular pathways. J. Cell. Biochem. 2018;119(4):2990–2998. doi: 10.1002/jcb.26450
28. Rajlic S., Treede H., Münzel T., Daiber A., Duerr G.D. Early detection is the best prevention-characterization of oxidative stress in diabetes mellitus and its consequences on the cardiovascular system. Cells. 2023;12(4):583. doi: 10.3390/cells12040583
29. Nowotny K., Jung T., Höhn A., Weber D., Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194–222. doi: 10.3390/biom5010194
30. Halliwell B., Gutteridge J.M. Free radicals in biology and medicine. Oxford University Press, 2015. 896 p.
31. Sindhu S., Akhter N., Kochumon S., Thomas R., Wilson A., Shenouda S., Tuomilehto J., Ahmad R. Increased expression of the innate immune receptor TLR10 in obesity and type-2 diabetes: association with ROS-mediated oxidative stress. Cell. Physiol. Biochem. 2018;45(2):572–590. doi: 10.1159/000487034
32. Ghasemi M., Amini-Khoei H., Lorigooini Z., Rafieian-Kopaei M. Oxidative stress and antioxidants in diabetes mellitus. Asian Pacific Journal of Tropical Medicine. 2020;13(10):431–438. doi: 10.4103/19957645.291036
33. Tibaut M. Oxidative stress genes, antioxidants and coronary artery disease in type 2 diabetes mellitus. Cardiovasc. Agent. Med. Chem. 2016;14(1):23–38. doi: 10.2174/1871525714666160407143416
34. Kanikarla-Marie P., Jain S.K. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes. Free Radic. Biol. Med. 2016;95:268–277. doi: 10.1016/j.freeradbiomed.2016.03.020
35. Yazıcı M.U., Ayar G., Savas-Erdeve S., Azapağası E., Neşelioğlu S., Erel Ö., Çetinkaya S. Role of ischemia modified albumin serum levels as an oxidative stress marker in children with diabetic ketoacidosis. Comb. Chem. High. Throughput. Screen. 2019;22(8):577–581. doi: 10.2174/1386207322666191008214919
36. Muriach M., Flores-Bellver M., Romero F.J., Barcia J.M. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid. Med. Cell. Longev. 2014;2014:102158. doi: 10.1155/2014/102158
37. Jha J.C., Banal C., Chow B.S.M., Cooper M.E., Jandeleit-Dahm K. Diabetes and kidney disease: role of oxidative stress. Antioxid. Redox. Signal. 2016;25(1):657–684. doi: 10.1089/ars.2016.6664
38. Li J., Huang M., Shen X. The association of oxidative stress and pro-inflammatory cytokines in diabetic patients with hyperglycemic crisis. J. Diabetes Complications. 2014;28(5):662–666. doi: 10.1016/j.jdiacomp.2014.06.008
39. Glaser N., Chu S., Weiner J., Zdepski L., Wulff H., Tancredi D., ODonnell M.E. Acute and chronic neuroinflammation is triggered by diabetic ketoacidosis in a rat model. BMJ Open Diabetes Res.Care. 2020;8(2):e001793. doi: 10.1136/bmjdrc-2020-001793
40. Li J., Pan L., Pan W., Li N., Tang B. Recent progress of oxidative stress associated biomarker detection. Chem. Commun. (Camb). 2023;59(48):7361– 7374. doi: 10.1039/d3cc00878a
41. Sehgal M., Batra M., Jha P., Sanchez O. Risk factors and laboratory findings associated with diabetic ketoacidosis in hospitalized pediatric patients. Cureus. 2022;14(5):e25410. doi: 10.7759/cureus.25410
42. Paoli A., Cerullo G. Investigating the link between ketogenic diet, NAFLD, mitochondria, and oxidative stress: a narrative review. Antioxidants (Basel). 2023;12(5):1065. doi: 10.3390/antiox12051065
43. Bykov Yu.V., Baturin V.A., Volkov E.V. Levels of autoantibodies against dopamine and NMDA receptors in children depending on the severity of diabetic ketoacidosis. Zabaykal’skiy meditsinskiy vestnik = The Transbaikalian Medical Bulletin. 2022;(3):18–26. [In Russian]. doi: 10.52485/19986173_2022_3_18
44. Chowdhury S., Ghosh S., Das A.K., Sil P.C. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Front. Pharmacol. 2019;10:27. doi: 10.3389/fphar.2019.00027
45. Chen M.Y., Meng X.F., Han Y.P., Yan J.L., Xiao C., Qian L.B. Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy: Inflammation and oxidative stress. Front. Endocrinol. (Lausanne). 2022;13:983713. doi: 10.3389/fendo.2022.983713
46. Rains J.L., Jain S.K. Effect of hyperketonemia (Acetoacetate) on nuclear factor-kappaB and p38 mitogen-activated protein kinase activation mediated intercellular adhesion molecule 1 upregulation in endothelial cells. Metab. Syndr. Relat. Disord. 2015;13:71–77. doi: 10.1089/met.2014.0101
47. Hoffman W.H., Ishikawa T., Blum J., Tani N., Ikeda T., Artlett C.M. Soluble receptor for glycation end-products concentration increases following the treatment of severe diabetic ketoacidosis. J. Clin. Res. Pediatr. Endocrinol. 2020;12(2):160–167. doi: 10.4274/jcrpe.galenos.2019.2019.0076
48. Singh A., Kukreti R., Saso L., Kukreti S. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules. 2022;27(3):950. doi: 10.3390/molecules27030950
49. de Paula M.L.A., Rodrigues Villela A.M., Negri M.M., Kanaan S., de Carvalho Cardoso Weide L. Role of advanced glycation end products related to the onset of diabetic kidney disease complications. Clin. Biomed. Res. 2017;37(4):341–348.
50. Ighodaro O.M. Molecular pathways associated with oxidative stress in diabetes mellitus Biomed. Pharmacother. 2018;108:656–662. doi: 10.1016/j.biopha.2018.09.058
51. Twarda-Clapa A., Olczak A., Białkowska A.M., Koziołkiewicz M. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11(8):1312. doi: 10.3390/cells11081312
52. Gopalakrishna K., McNeill T.H., Elhia- ni A.A., Gundimeda U. Methods for studying oxidative regulation of protein kinase C. Methods. Enzymol. 2013;528:79–98. doi: 10.1016/B978-0-12-4058811.00005-7
53. Lien C.F., Chen S.J., Tsai M.C., Lin C.S. Potential role of protein kinase C in the pathophysiology of diabetes-associated atherosclerosis. Front. Pharmacol. 2021;12:716332. doi: 10.3389/fphar.2021.716332
54. Behl T., Kaur I., Kotwani A. Implication of oxidative stress in progression of diabetic retinopathy. Surv. Ophthalmol. 2016;61(2):187–196. doi: 10.1016/j.survophthal.2015.06.001
55. Yan L.J. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model Exp. Med. 2018;1(1):7–13. doi: 10.1002/ame2.12001
56. Kilanczyk E., Saraswat Ohri S., Whittemore S.R., Hetman M. Antioxidant protection of NADPH-depleted oligodendrocyte precursor cells is dependent on supply of reduced glutathione. ASN Neuro. 2016;8(4):1759091416660404. doi: 10.1177/1759091416660404
Review
For citations:
Bykov Yu.V. Diabetic ketoacidosis and oxidative stress: pathophysiological mechanisms. Сибирский научный медицинский журнал. 2023;43(6):6-13. (In Russ.) https://doi.org/10.18699/SSMJ20230601