Диабетический кетоацидоз и окислительный стресс: патофизиологические механизмы
https://doi.org/10.18699/SSMJ20230601
Аннотация
Сахарный диабет (СД) – распространенная эндокринная патология с большим количеством острых и хронических осложнений, среди которых диабетический кетоацидоз (ДКА) является наиболее частым и тяжелым осложнением, особенно у детей и подростков с СД 1 типа. Окислительный стресс (ОС) – патологического состояние, которое возникает в результате дисбаланса между образованием свободных радикалов и неэффективностью антиоксидантной системы. ОС служит мощным фактором риска развития многих диабетических осложнений. В последнее время он рассматривается как важная составляющая ДКА, патофизиологические механизмы развития которого изучены еще недостаточно хорошо. Описаны гипотезы, согласно которым ОС не только провоцирует и утяжеляет проявления ДКА, но и представляет собой тяжелое последствие самого ДКА, что приводит к прогрессированию многих микро- и макроскопических диабетических осложнений. Среди основных патофизиологических механизмов развития ОС при ДКА рассматриваются образование конечных продуктов гликирования, активация протеинкиназы C, полиолового и гексозаминового путей. Улучшение понимания патогенеза ОС при ДКА позволит оптимизировать диагностику ОС и подходы к коррекции ДКА за счет своевременного назначения антиоксидантов.
Об авторе
Ю. В. БыковРоссия
Быков Юрий Витальевич - к.м.н.
355017, Ставрополь, ул. Мира; 310 355002, Ставрополь, ул. Пономарева, 5
Список литературы
1. Pasupuleti V.R., Arigela C.S., Gan S.H., Salam S.K.N., Krishnan K.T., Rahman N.A., Jeffree M.S. A review on oxidative stress, diabetic complications, and the roles of honey polyphenols. Oxid. Med. Cell. Longev. 2020;2020:8878172. doi: 10.1155/2020/8878172
2. Black H.S. A synopsis of the associations of oxidative stress, ROS, and antioxidants with diabetes mellitus. Antioxidants (Basel). 2022;11(10):2003. doi: 10.3390/antiox11102003
3. Papachristoforou E., Lambadiari V., Maratou E., Makrilakis K. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J. Diabetes Res. 2020;2020:7489795. doi: 10.1155/2020/7489795
4. Li J., Shen X. Leptin concentration and oxidative stress in diabetic ketoacidosis. Eur. J. Clin. Invest. 2018;48(10):e13006. doi: 10.1111/eci.13006
5. Li J., Shen X. Oxidative stress and adipokine levels were significantly correlated in diabetic patients with hyperglycemic crises. Diabetol. Metab. Syndr. 2019;11:13. doi: 10.1186/s13098-019-0410-5
6. Mayer-Davis E.J., Lawrence J.M., Dabelea D., Divers J., Isom S., Dolan L., Imperatore G., Linder B., Marcovina S., Pettitt D.J., … SEARCH for Diabetes in Youth Study. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N. Engl. J. Med. 2017;376(15):1419–1429. doi: 10.1056/NEJMoa1610187
7. Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N., Colagiuri S., Guariguata L., Motala A.A., Ogurtsova K., … IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019;157:107843. doi: 10.1016/j.diabres.2019.107843
8. American Diabetes Association. 4. Comprehensive medical evaluation and assessment of comorbidities: standards of medical care in diabetes-2020. Diabetes care. 2019;43(Suppl 1):S37–S47. doi: 10.2337/dc20-S004
9. Baynest H.W. Classification, pathophysiology, diagnosis and management of diabetes mellitus. Journal of Diabetes & Metabolism. 2015;6(5):1–9. doi: 10.4172/2155-6156.1000541
10. Bommer C., Heesemann E., Sagalova V., Manne-Goehler J., Atun R., Bärnighausen T., Vollmer S. The global economic burden of diabetes in adults aged 20–79 years: a cost-of-illness study. Lancet Diabetes Endocrinol. 2017;5(6):423–430. doi: 10.1016/S2213-8587(17)30097-9
11. Быков Ю.В., Батурин В.А. Когнитивные нарушения при сахарном диабете 1 типа. Сиб. науч. мед. ж. 2023;43(1):4–12. doi: 10.18699/SSMJ20230101
12. Быков Ю.В. Диабетический кетоацидоз у детей и подростков: от патофизиологии до профилактики. Забайк. мед. вестн. 2021;(2);85–95. doi: 10.52485/19986173_2021_2_85
13. Yaribeygi H., Sathyapalan T., Atkin S.L., Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell. Longev. 2020;2020:8609213. doi: 10.1155/2020/8609213
14. Yaribeygi H., Farrokhi F.R., Butler A.E., Sahebkar A. Insulin resistance: review of the underlying molecular mechanisms. J. Cell. Physiol. 2019;234(6):8152–8161. doi: 10.1002/jcp.27603
15. Ziegler R., Neu A. Diabetes in childhood and adolescence. Dtsch. Arztebl. Int. 2018;115(9):146–156. doi: 10.3238/arztebl.2018.0146
16. Otal Y., Kahraman F.A., Haydar F.G., Erel Ö. Dynamic thiol/disulfide homeostasis as oxidative stress marker in diabetic ketoacidosis. Turk. J. Med. Sci. 2021;51(2):743–748. doi: 10.3906/sag-1904-55
17. Быков Ю.В., Батурин В.А. Патофизиологические механизмы отека головного мозга при диабетическом кетоацидозе в детской практике. Медицина. 2021;(1):116–127. doi: 10.29234/23089113-2021-9-1-116-127
18. Misra S., Oliver N.S. Diabetic ketoacidosis in adults. BMJ. 2015;351:h5660. doi: 10.1136/bmj.h5660
19. Aldhaeefi M., Aldardeer N.F., Alkhani N., Alqarni S.M., Alhammad A.M., Alshaya A.I. Updates in the management of hyperglycemic crisis. Front. Clin. Diabetes Healthc. 2022;2:820728. doi: 10.3389/fcdhc.2021.820728
20. Barski L., Golbets E., Jotkowitz A., Schwarzfuchs D. Management of diabetic ketoacidosis. Eur. J. Intern. Med. 2023;S0953–6205(23)00231-5. doi: 10.1016/j.ejim.2023.07.005
21. Mays J.A., Jackson K.L., Derby T.A., Behrens J.J., Goel S., Molitch M.E., Kho A.N., Wallia A. An evaluation of recurrent diabetic ketoacidosis, fragmentation of care, and mortality across Chicago, Illinois. Diabetes Care. 2016;39(10):1671–1676. doi: 10.2337/dc16-0668
22. Rugg-Gunn C.E., Deakin M., Hawcutt D.B. Update and harmonisation of guidance for the management of diabetic ketoacidosis in children and young people in the UK. BMJ Paediatr. Open. 2021;5(1):e001079. doi: 10.1136/bmjpo-2021-001079
23. Karslioglu French E., Donihi A.C., Korytkowski M.T. Diabetic ketoacidosis and hyperosmolar hyperglycemic syndrome: review of acute decompensated diabetes in adult patients. BMJ. 2019;365:I1141. doi: 10.1136/bmj.l1114
24. Fayfman M., Pasquel F.J., Umpierrez G.E. Management of hyperglycemic crises. Med. Clinics. North. Am. 2017;101(3):587–606. doi: 10.1016/j.mcna.2016.12.011
25. Inci K., Gokcen T., Aylin B., Serdar U. Acute hyperglycemia causes oxidative stress which is prevented by vitamin E pretreatment in healthy rabbits. Journal of Research in Pharmacy. 2022; 26(3):534– 542. doi:10.29228/jrp.150
26. Asmat U., Abad K., Ismail K. Diabetes mellitus and oxidative stress – A concise review. Saudi Pharm. J. 2016;24(5):547–553. doi: 10.1016/j.jsps.2015.03.013
27. Yaribeygi H., Farrokhi F.R., Rezaee R., Sahebkar A. Oxidative stress induces renal failure: a review of possible molecular pathways. J. Cell. Biochem. 2018;119(4):2990–2998. doi: 10.1002/jcb.26450
28. Rajlic S., Treede H., Münzel T., Daiber A., Duerr G.D. Early detection is the best prevention-characterization of oxidative stress in diabetes mellitus and its consequences on the cardiovascular system. Cells. 2023;12(4):583. doi: 10.3390/cells12040583
29. Nowotny K., Jung T., Höhn A., Weber D., Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194–222. doi: 10.3390/biom5010194
30. Halliwell B., Gutteridge J.M. Free radicals in biology and medicine. Oxford University Press, 2015. 896 p.
31. Sindhu S., Akhter N., Kochumon S., Thomas R., Wilson A., Shenouda S., Tuomilehto J., Ahmad R. Increased expression of the innate immune receptor TLR10 in obesity and type-2 diabetes: association with ROS-mediated oxidative stress. Cell. Physiol. Biochem. 2018;45(2):572–590. doi: 10.1159/000487034
32. Ghasemi M., Amini-Khoei H., Lorigooini Z., Rafieian-Kopaei M. Oxidative stress and antioxidants in diabetes mellitus. Asian Pacific Journal of Tropical Medicine. 2020;13(10):431–438. doi: 10.4103/19957645.291036
33. Tibaut M. Oxidative stress genes, antioxidants and coronary artery disease in type 2 diabetes mellitus. Cardiovasc. Agent. Med. Chem. 2016;14(1):23–38. doi: 10.2174/1871525714666160407143416
34. Kanikarla-Marie P., Jain S.K. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes. Free Radic. Biol. Med. 2016;95:268–277. doi: 10.1016/j.freeradbiomed.2016.03.020
35. Yazıcı M.U., Ayar G., Savas-Erdeve S., Azapağası E., Neşelioğlu S., Erel Ö., Çetinkaya S. Role of ischemia modified albumin serum levels as an oxidative stress marker in children with diabetic ketoacidosis. Comb. Chem. High. Throughput. Screen. 2019;22(8):577–581. doi: 10.2174/1386207322666191008214919
36. Muriach M., Flores-Bellver M., Romero F.J., Barcia J.M. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid. Med. Cell. Longev. 2014;2014:102158. doi: 10.1155/2014/102158
37. Jha J.C., Banal C., Chow B.S.M., Cooper M.E., Jandeleit-Dahm K. Diabetes and kidney disease: role of oxidative stress. Antioxid. Redox. Signal. 2016;25(1):657–684. doi: 10.1089/ars.2016.6664
38. Li J., Huang M., Shen X. The association of oxidative stress and pro-inflammatory cytokines in diabetic patients with hyperglycemic crisis. J. Diabetes Complications. 2014;28(5):662–666. doi: 10.1016/j.jdiacomp.2014.06.008
39. Glaser N., Chu S., Weiner J., Zdepski L., Wulff H., Tancredi D., ODonnell M.E. Acute and chronic neuroinflammation is triggered by diabetic ketoacidosis in a rat model. BMJ Open Diabetes Res.Care. 2020;8(2):e001793. doi: 10.1136/bmjdrc-2020-001793
40. Li J., Pan L., Pan W., Li N., Tang B. Recent progress of oxidative stress associated biomarker detection. Chem. Commun. (Camb). 2023;59(48):7361– 7374. doi: 10.1039/d3cc00878a
41. Sehgal M., Batra M., Jha P., Sanchez O. Risk factors and laboratory findings associated with diabetic ketoacidosis in hospitalized pediatric patients. Cureus. 2022;14(5):e25410. doi: 10.7759/cureus.25410
42. Paoli A., Cerullo G. Investigating the link between ketogenic diet, NAFLD, mitochondria, and oxidative stress: a narrative review. Antioxidants (Basel). 2023;12(5):1065. doi: 10.3390/antiox12051065
43. Быков Ю.В., Батурин В.А., Волков Е.В. Уровень аутоантител к дофаминовым и NMDA рецепторам у детей в зависимости от степени тяжести диабетического кетоацидоза. Забайк. мед. вестн. 2022;(3):18–26. doi: 10.52485/19986173_2022_3_18
44. Chowdhury S., Ghosh S., Das A.K., Sil P.C. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Front. Pharmacol. 2019;10:27. doi: 10.3389/fphar.2019.00027
45. Chen M.Y., Meng X.F., Han Y.P., Yan J.L., Xiao C., Qian L.B. Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy: Inflammation and oxidative stress. Front. Endocrinol. (Lausanne). 2022;13:983713. doi: 10.3389/fendo.2022.983713
46. Rains J.L., Jain S.K. Effect of hyperketonemia (Acetoacetate) on nuclear factor-kappaB and p38 mitogen-activated protein kinase activation mediated intercellular adhesion molecule 1 upregulation in endothelial cells. Metab. Syndr. Relat. Disord. 2015;13:71–77. doi: 10.1089/met.2014.0101
47. Hoffman W.H., Ishikawa T., Blum J., Tani N., Ikeda T., Artlett C.M. Soluble receptor for glycation end-products concentration increases following the treatment of severe diabetic ketoacidosis. J. Clin. Res. Pediatr. Endocrinol. 2020;12(2):160–167. doi: 10.4274/jcrpe.galenos.2019.2019.0076
48. Singh A., Kukreti R., Saso L., Kukreti S. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules. 2022;27(3):950. doi: 10.3390/molecules27030950
49. de Paula M.L.A., Rodrigues Villela A.M., Negri M.M., Kanaan S., de Carvalho Cardoso Weide L. Role of advanced glycation end products related to the onset of diabetic kidney disease complications. Clin. Biomed. Res. 2017;37(4):341–348.
50. Ighodaro O.M. Molecular pathways associated with oxidative stress in diabetes mellitus Biomed. Pharmacother. 2018;108:656–662. doi: 10.1016/j.biopha.2018.09.058
51. Twarda-Clapa A., Olczak A., Białkowska A.M., Koziołkiewicz M. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11(8):1312. doi: 10.3390/cells11081312
52. Gopalakrishna K., McNeill T.H., Elhia- ni A.A., Gundimeda U. Methods for studying oxidative regulation of protein kinase C. Methods. Enzymol. 2013;528:79–98. doi: 10.1016/B978-0-12-4058811.00005-7
53. Lien C.F., Chen S.J., Tsai M.C., Lin C.S. Potential role of protein kinase C in the pathophysiology of diabetes-associated atherosclerosis. Front. Pharmacol. 2021;12:716332. doi: 10.3389/fphar.2021.716332
54. Behl T., Kaur I., Kotwani A. Implication of oxidative stress in progression of diabetic retinopathy. Surv. Ophthalmol. 2016;61(2):187–196. doi: 10.1016/j.survophthal.2015.06.001
55. Yan L.J. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model Exp. Med. 2018;1(1):7–13. doi: 10.1002/ame2.12001
56. Kilanczyk E., Saraswat Ohri S., Whittemore S.R., Hetman M. Antioxidant protection of NADPH-depleted oligodendrocyte precursor cells is dependent on supply of reduced glutathione. ASN Neuro. 2016;8(4):1759091416660404. doi: 10.1177/1759091416660404
Рецензия
Для цитирования:
Быков Ю.В. Диабетический кетоацидоз и окислительный стресс: патофизиологические механизмы. Сибирский научный медицинский журнал. 2023;43(6):6-13. https://doi.org/10.18699/SSMJ20230601
For citation:
Bykov Yu.V. Diabetic ketoacidosis and oxidative stress: pathophysiological mechanisms. Сибирский научный медицинский журнал. 2023;43(6):6-13. (In Russ.) https://doi.org/10.18699/SSMJ20230601