Preview

Сибирский научный медицинский журнал

Расширенный поиск

Особенности редокс-регуляции в опухолевых клетках

https://doi.org/10.15372/SSMJ20190202

Полный текст:

Аннотация

Проведен анализ эндогенных механизмов продукции активированных кислородных метаболитов (АКМ: активные формы кислорода и азота) и систем антиоксидантной защиты в опухолевых клетках. Повышенная продукция АКМ является важным регулятором метаболических изменений в этих клетках: усиленная пролиферация, ингибирование апоптоза, устойчивость к гипоксии и действию цитостатиков (доксорубицина, карбоплатина, цисплатина и др.). Наиболее активными источниками АКМ в опухолевых клетках выступают митохондрии, NAD(P)H-оксидазы и пероксисомы, которые синтезируют О2 • – и H2O2. В митохондриях супероксидный анионрадикал генерируется главным образом комплексами I и III; мембранные NAD(P)H-оксидазы Nox1, Nox2, Nox3 и Nox5 продуцируют О2 • –, Nox4 и двойные оксидазы DUOX-1, DUOX-2 – преимущественно H2O2. Повышение стационарной концентрации АКМ активирует эндогенные механизмы антиоксидантной защиты, такие как редокс-зависимая система антиоксидант-респонсивного элемента Keap1/Nrf2/ARE и аутофагия, это позволяет опухолевым клеткам выживать в условиях окислительного стресса и может лежать в основе устойчивости к радио- и химиотерапии. Обсуждены возможности регуляции редокс-баланса опухолевых клеток антиоксидантами с направленным действием и специфическими ингибиторами ферментативных механизмов продукции АКМ.

Об авторах

Н. К. Зенков
НИИ экспериментальной и клинической медицины ФИЦ фундаментальной и трансляционной медицины
Россия

д.б.н., ведущий научный сотрудник лаборатории молекулярных механизмов свободнорадикальных процессов

630117, г. Новосибирск, ул. Тимакова, 2



П. М. Кожин
НИИ экспериментальной и клинической медицины ФИЦ фундаментальной и трансляционной медицины
Россия

старший научный сотрудник лаборатории молекулярных механизмов свободнорадикальных процессов

630117, г. Новосибирск, ул. Тимакова, 2



А. В. Вчерашняя
Белорусский государственный университет
Беларусь

младший научный сотрудник кафедры биофизики

220030, г. Минск, просп. Независимости, 4



Г. Г. Мартинович
Белорусский государственный университет
Беларусь

д.б.н., зав. кафедрой биофизики

220030, г. Минск, просп. Независимости, 4



Н. В. Кандалинцева
Новосибирский государственный педагогический университет
Россия

к.х.н., директор Института естественных и социально-экономических наук

630126, г. Новосибирск, ул. Вилюйская, 28



Е. Б. Меньщикова
НИИ экспериментальной и клинической медицины ФИЦ фундаментальной и трансляционной медицины
Россия

д.м.н., зав. лабораторией молекулярных механизмов свободнорадикальных процессов

630117, г. Новосибирск, ул. Тимакова, 2



Список литературы

1. Аникин И.В., Попович И.Г., Тындык М.Л., Забежинский М.А., Юрова М.Н., Скулачев В.П., Анисимов В.Н. Действие производного пластохинона SkQ1 на канцерогенез в мягких тканях, индуцированный бенз(а)пиреном // Вопр. онкологии. 2013. 59. (1). 89–93.

2. Антоненко Ю.Н., Аветисян A.В., Бакеева Л.E., Черняк Б.В., Чертков В.A., Домнина Л.В., Иванова О.Ю., Изюмов Д.С., Хайлова Л.С., Клишин С.С., Коршунова Г.А., Лямзаев К.Г., Мунтян М.С., Непряхина O.K., Пашковская A.A., Плетюшкина O.Ю., Пустовидко A.В., Рогинский В.А., Рокицкая T.И., Рууге Э.K., Сапрунова В.Б., Северина И.И., Симонян Р.А., Скулачев И.В., Скулачев М.В., Сумбатян Н.В., Свиряева И.В., Ташлицкий В.Н., Васильев Ю.М., Высоких M.Ю., Ягужинский Л.С., Замятнин А.А., Скулачев В.П. Производное пластохинона, адресованное в митохондрии, как средство, прерывающее программу старения. 1. Катионные производные пластохинона: синтез и исследование in vitro // Биохимия. 2008. 73. (12). 1589–1606.

3. Гривенникова В.Г., Виноградов А.Д. Генерация АФК митохондриями // Успехи биол. химии. 2013. 53. 245–296.

4. Зенков Н.К., Кожин П.М., Чечушков А.В., Мартинович Г.Г., Кандалинцева Н.В., Меньщикова Е.Б. Лабиринты регуляции Nrf2 // Биохимия. 2017. 82. (5). 757–767.

5. Зенков Н.К., Меньщикова Е.Б., Ткачев В.О. Редокс-чувствительная сигнальная система Keap1/Nrf2/ARE как фармакологическая мишень // Биохимия. 2013. 78. (1). 27–47.

6. Калинина Е.В., Андреев Я.А., Петрова А.С., Лубова К.И., Штиль А.А., Чернов Н.Н., Новичкова М.Д., Нурмурадов Н.К. Редокс-зависимая экспрессия генов NADPH-оксидазы 5 и ключевых антиоксидантных ферментов при формировании лекарственной устойчивости опухолевых клеток к цисплатину // Бюл. эксперим. биологии и медицины. 2018. 165. (5). 624–627.

7. Мартинович Г.Г., Мартинович И.В., Вчерашняя А.В., Зенков Н.К., Меньщикова Е.Б., Кандалинцева Н.В., Черенкевич С.Н. Механизмы редокс-регуляции химиорезистентности опухолевых клеток фенольными антиоксидантами // Биофизика. 2017. 62. (6). 1142–1152.

8. Мартинович Г.Г., Мартинович И.В., Зенков Н.К., Меньщикова Е.Б., Кандалинцева Н.В., Черенкевич С.Н. Индуктор экспрессии ARE-регулируемых генов фенольный антиоксидант ТС-13 вызывает гибель опухолевых клеток через митохондриально-опосредованный путь // Биофизика. 2015. 60. (1). 120–128.

9. Меньщикова Е.Б., Зенков Н.К., Кожин П.М., Чечушков А.В., Ковнер А.В., Храпова М.В., Кандалинцева Н.В., Мартинович Г.Г. Синтетический фенольный антиоксидант ТС-13 подавляет рост перевиваемой карциномы легких Льюис и потенцирует онколитический эффект доксорубицина // Бюл. эксперим. биологии и медицины. 2018. 116. (11). 592–597.

10. Меньщикова Е.Б., Ланкин В.З., Зенков Н.К., Бондарь И.А., Круговых Н.Ф., Труфакин В.А. Окислительный стресс. Прооксиданты и антиоксиданты. М.: Слово, 2006. 556 с.

11. Павлов В.Н. Свободнорадикальное окисление и канцерогенез: дискуссионные вопросы // Креатив. хирургия и онкология. 2017. 7. (2). 54–61.

12. Adam J., Hatipoglu E., O’Flaherty L., Ternette N., Sahgal N., Lockstone H., Baban D., Nye E., Stamp G.W., Wolhuter K., Stevens M., Fischer R., Carmeliet P., Maxwell P.H., Pugh C.W., Frizzell N., Soga T., Kessler B.M., El-Bahrawy M., Ratcliffe P.J.,

13. Pollard P.J. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling // Cancer. Cell. 2011. 20. (4). 524–537.

14. Anding A.L., Baehrecke E.H. Cleaning house: Selective autophagy of organelles // Dev. Cell. 2017. 41. (1). 10–22.

15. Antony S., Wu Y., Hewitt S.M., Anver M.R., Butcher D., Jiang G., Meitzler J.L., Liu H., Juhasz A., Lu J., Roy K.K., Doroshow J.H. Characterization of NADPH oxidase 5 expression in human tumors and tumor cell lines with a novel mouse monoclonal antibody // Free Radic. Biol. Med. 2013. 65. 497–508.

16. Basak P., Sadhukhan P., Sarkar P., Sil P.C. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy // Toxicol. Rep. 2017. 4. 306–318.

17. Battogtokh G., Cho Y.-Y., Lee J.Y., Lee H.S., Kang H.C. Mitochondrial-targeting anticancer agent conjugates and nanocarrier systems for cancer treatment // Front. Pharmacol. 2018. 9. ID 922.

18. Bazhin A.V., Yang Y., D’Haese J.G., Werner J., Philippov P.P., Karakhanova S. The novel mitochondriatargeted antioxidant SkQ1 modulates angiogenesis and inflammatory micromilieu in a murine orthotopic model of pancreatic cancer // Int. J. Cancer. 2016. 139. (1). 130–139.

19. Best S.A., Sutherland K.D. «Keaping» a lid on lung cancer: the Keap1-Nrf2 pathway // Cell Cycle. 2018. 17. (14). 1696–1707.

20. Biasutto L., Mattarei A., Azzolini M., La Spina M., Sassi N., Romio M., Paradisi C., Zoratti M. Resveratrol derivatives as a pharmacological tool // Ann. N. Y. Acad. Sci. 2017. 1403. (1). 27–37.

21. Bishop E., Bradshaw T.D. Autophagy modulation: a prudent approach in cancer treatment? // Cancer Chemother. Pharmacol. 2018. 82. (6). 913–922.

22. Bonekamp N.A., Völkl A., Fahimi H.D., Schrader M. Reactive oxygen species and peroxisomes: Struggling for balance // Biofactors. 2009. 35. (4). 346–355.

23. Breitenbach M., Rinnerthaler M., Weber M., Breitenbach-Koller H., Karl T., Cullen P., Basu S., Haskova D., Hasek J. The defense and signaling role of NADPH oxidases in eukaryotic cells : Review // Wien. Klin. Wochenschr. 2018. 168. (11-12). 286–299.

24. Cai M., Sun X., Wang W., Lian Z., Wu P., Han S., Chen H., Zhang P. Disruption of peroxisome function leads to metabolic stress, mTOR inhibition, and lethality in liver cancer cells // Cancer Lett. 2018. 421. 82–93.

25. Cheng G., Zielonka J., McAllister D.M., Mackinnon A.C., Joseph J., Dwinell M.B., Kalyanaraman B. Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death // BMC Cancer. 2013. 13. (1).

26. Cheng G., Zielonka J., Ouari O., Lopez M., McAllister D., Boyle K., Barrios C.S.,

27. Weber J.J., Johnson B.D., Hardy M., Dwinell M.B., Kalyanaraman B. Mitochondria-targeted analogues of metformin exhibit enhanced antiproliferative and radiosensitizing effects in pancreatic cancer cells // Cancer Res. 2016. 76. (13). 3904–3915.

28. Chikara S., Nagaprashantha L.D., Singhal J., Horne D., Awasthi S., Singhal S.S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment // Cancer Lett. 2018. 413. 122–134.

29. Cipolla C.M., Lodhi I.J. Peroxisomal dysfunction in age-related diseases // Trends Endocrinol. Metab. 2017. 28. (4). 297–308.

30. Crosas-Molist E., Bertran E., Sancho P., López-Luque J., Fernando J., Sánchez A., Fernández M., Navarro E., Fabregat I. The NADPH oxidase NOX4 inhibits hepatocyte proliferation and liver cancer progression // Free Radic. Biol. Med. 2014. 69. 338–347.

31. Dahabieh M.S., di Pietro E., Jangal M., Goncalves C., Witcher M., Braverman N.E., del Rincón S.V. Peroxisomes and cancer: The role of a metabolic specialist in a disease of aberrant metabolism // Biochim. Biophys. Acta. Rev. Cancer. 2018. 1870. (1). 103–121.

32. De Groot P.M., Wu C.C., Carter B.W., Munden R.F. The epidemiology of lung cancer // Transl. Lung Cancer Res. 2018. 7. (3). 220–233.

33. Desantis V., Saltarella I., Lamanuzzi A., Mariggio M.A., Racanelli V., Vacca A., Frassanito M.A. Autophagy: A new mechanism of prosurvival and drug resistance in multiple myeloma // Transl. Oncol. 2018. 11. (6). 1350–1357.

34. Di Meo S., Reed T.T., Venditti P., Victor V.M. Role of ROS and RNS sources in physiological and pathological conditions // Oxid. Med. Cell. Longev. 2016. 2016. 1245049.

35. Diaz B., Shani G., Pass I., Anderson D., Quintavalle M., Courtneidg S.A. Tks5-dependent, Nox-mediated generation of reactive oxygen species is necessary for invadopodia formation // Sci. Signal. 2009. 2. (88). ra53–ra53.

36. Dickerson T., Jauregui C.E., Teng Y. Friend or foe? Mitochondria as a pharmacological target in cancer treatment // Future Med. Chem. 2017. 9. (18). 2197–2210.

37. Diebold L., Chandel N.S. Mitochondrial ROS regulation of proliferating cells // Free Radic. Biol. Med. 2016. 100. 86–93.

38. Filomeni G., de Zio D., Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs // Cell Death Differ. 2015. 22. (3). 377–388.

39. Fukutomi T., Takagi K., Mizushima T., Ohuchi N., Yamamoto M. Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1 // Mol. Cell. Biochem. 2014. 34. (5). 832–846.

40. Galadari S., Rahman А., Pallichankandy S., Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? // Free Radic. Biol. Med. 2017. 104. 144–164.

41. Gao X., Schottker B. Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews // Oncotarget. 2017. 8. (31). 51888–51906.

42. Gazzano E., Lazzarato L., Rolando B., Kopecka J., Guglielmo S., Costamagna C., Chegaev K., Riganti C. Mitochondrial delivery of phenol substructure triggers mitochondrial depolarization and apoptosis of cancer cells // Front. Pharmacol. 2018. 9. 580.

43. Graham K.A., Kulawiec M., Owens K.M., Li X., Desouki M.M., Chandra D., Singh K.K. NADPH oxidase 4 is an oncoprotein localized to mitochondria // Cancer Biol. Ther. 2010. 10. (3). 223–231.

44. Gwangwa M.V., Joubert A.M., Visagie M.H. Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumourigenesis // Cell. Mol. Biol. Lett. 2018. 23. (1).

45. Harrison I.P., Selemidis S. Understanding the biology of reactive oxygen species and their link to cancer: NADPH oxidases as novel pharmacological targets // Clin. Exp. Pharmacol. Physiol. 2014. 41. (8). 533–542.

46. He L., He T., Farrar S., Ji L., Liu T., Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species // Cell. Physiol. Biochem. 2017. 44. (2). 532–553.

47. Helfinger V., Schröder K. Redox control in cancer development and progression // Mol. Aspects Med. 2018. 63. 88–98.

48. Hempel N., Trebak M. Crosstalk between calcium and reactive oxygen species signaling in cancer // Cell Calcium. 2017. 63. 70–96.

49. Hong S.-K., Starenki D., Wu P.-K., Park J.-I. Suppression of B-RafV600E melanoma cell survival by targeting mitochondria using triphenyl-phosphoniumconjugated nitroxide or ubiquinone // Cancer Biol. Ther. 2016. 18. (2). 106–114.

50. Hu Y., Ju Y., Lin D., Wang Z., Huang Y., Zhang S., Wu C., Jiao S. Mutation of the Nrf2 gene in non-small cell lung cancer // Mol. Biol. Rep. 2012. 39. (4). 4743–4747.

51. Ichimura Y., Komatsu M. Activation of p62/SQSTM1–Keap1–Nuclear Factor Erythroid 2-Related Factor 2 Pathway in Cancer // Front. Oncol. 2018. 8. ID 210.

52. Jayakumar S., Patwardhan R.S., Pal D., Singh B., Sharma D., Kutala V.K., Sandur S.K. Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity // Free Radic. Biol. Med. 2017. 113. 530–538.

53. Jeddi F., Soozangar N., Sadeghi M.R., Somi M.H., Samadi N. Contradictory roles of Nrf2/Keap1 signaling pathway in cancer prevention/promotion and

54. chemoresistance // DNA Repair. 2017. 54. 13–21.

55. Kalyanaraman B., Cheng G., Hardy M., Ouari O., Bennett B., Zielonka J. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies // Redox Biol. 2018. 15. 347–362.

56. Kaur R., Kaur J., Mahajan J., Kumar R., Arora S. Oxidative stress–implications, source and its prevention // Environ. Sci. Pollut. Res. 2013. 21. (3). 1599–1613.

57. Kerins M.J., Ooi A. A catalogue of somatic NRF2 gain-of-function mutations in cancer // Sci. Rep. 2018. 8. (1). 12846.

58. Kim J., Keum Y.S. NRF2, a key regulator of antioxidants with two faces towards cancer // Oxid. Med. Cell. Longev. 2016. 2016. 2746457.

59. Kirkpatrick D.L., Powis G. Clinically ealuated cancer drugs inhibiting redox signaling // Antioxid. Redox Signal. 2017. 26. (6). 262–273.

60. Kitamoto K., Miura Y., Karnan S., Ota A., Konishi H., Hosokawa Y., Sato K. Inhibition of NADPH oxidase 2 induces apoptosis in osteosarcoma: The role of reactive oxygen species in cell proliferation // Oncol. Lett. 2018. 15. (5). 7955–7962.

61. Li L., Chen Y., Gibson S.B. Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation // Cell. Signal. 2013. 25. (1). 50–65.

62. Little A.C., Sham D., Hristova M., Danyal K., Heppner D.E., Bauer R.A., Sipsey L.M., Habibovic A., van der Vliet A. DUOX1 silencing in lung cancer promotes EMT, cancer stem cell characteristics and invasive properties // Oncogenesis. 2016. 5. (10). e261–e261.

63. Little A.C., Sulovari A., Danyal K., Heppner D.E., Seward D.J., van der Vliet A. Paradoxical roles of dual oxidases in cancer biology // Free Radic. Biol. Med. 2017. 110. 117–132.

64. Liu-Smith F., Jia J., Zheng Y. UV-induced molecular signaling differences in melanoma and nonmelanoma skin cancer // Adv. Exp. Med. Biol. 2017. 996. 27–40.

65. Liu R., Peng J., Wang H., Li L., Wen X., Tan Y., Zhang L., Wan H., Chen F., Nie X. Oxysophocarpine retards the growth and metastasis of oral squamous cell carcinoma by targeting the Nrf2/HO-1 axis // Cell. Physiol. Biochem. 2018 1717–1733.

66. Lu K., Alcivar A.L., Ma J., Foo T.K., Zywea S., Mahdi A., Huo Y., Kensler T.W., Gatza M.L., Xia B. NRF2 induction supporting breast cancer cell survival is enabled by oxidative stress-induced DPP3-KEAP1 interaction // Cancer Res. 2017. 77. (11). 2881–2892.

67. Marinković M., Šprung M., Buljubašić M., Novak I. Autophagy modulation in cancer: Current knowledge on action and therapy // Oxid. Med. Cell. Longev. 2018. 2018. 1–18.

68. Menegon S., Columbano A., Giordano S. The dual roles of NRF2 in cancer // Trends Mol. Med. 2016. 22. (7). 578–593.

69. Miyata Y., Matsuo T., Sagara Y., Ohba K., Ohyama K., Sakai H. A mini-review of reactive oxygen species in urological cancer: Correlation with NADPH oxidases, angiogenesis, and apoptosis // Int. J. Mol. Sci. 2017. 18. (10). 2214.

70. Mochizuki T., Furuta S., Mitsushita J., Shang W.H., Ito M., Yokoo Y., Yamaura M., Ishizone S., Nakayama J., Konagai A., Hirose K., Kiyosawa K., Kamata T. Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells // Oncogene. 2006. 25. (26). 3699–3707.

71. Moghtaderi H., Sepehri H., Delphi L., Attari F. Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231 // Bioimpacts. 2018. 8. (3). 185–194.

72. Morel E., Mehrpour M., Botti J., Dupont N., Hamaï A., Nascimbeni A.C., Codogno P. Autophagy: A druggable process // Annu. Rev. Pharmacol. Toxicol. 2017. 57. (1). 375–398.

73. Na H.-K., Surh Y.-J. Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1 // Free Radic. Biol. Med. 2014. 67. 353–365.

74. Nordgren M., Fransen M. Peroxisomal metabolism and oxidative stress // Biochimie. 2014. 98. 56–62.

75. Ooi A., Dykema K., Ansari A., Petillo D., Snider J., Kahnoski R., Anema J., Craig D., Carpten J., Teh B.T., Furge K.A. CUL3 and NRF2 mutations confer an NRF2 activation phenotype in a sporadic form of papillary renal cell carcinoma // Cancer Res. 2013. 73. (7). 2044–2051.

76. Orr A.L., Vargas L., Turk C.N., Baaten J.E., Matzen J.T., Dardov V.J., Attle S.J., Li J., Quackenbush D.C., Goncalves R.L.S., Perevoshchikova I.V., Petrassi H.M., Meeusen S.L., Ainscow E.K., Brand M.D. Suppressors of superoxide production from mitochondrial complex III // Nat. Chem. Biol. 2015. 11. (11). 834–836.

77. Pandey P., Singh A.K., Singh M., Tewari M., Shukla H.S., Gambhir I.S. The see-saw of Keap1-Nrf2 pathway in cancer // Crit. Rev. Oncol. Hematol. 2017. 116. 89–98.

78. Rao V.A., Klein S.R., Bonar S.J., Zielonka J., Mizuno N., Dickey J.S., Keller P.W., Joseph J., Kalyanaraman B., Shacter E. The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinine // J. Biol. Chem. 2010. 285. (45). 34447–34459.

79. Rodic S., Vincent M.D. Reactive oxygen species (ROS) are a key determinant of cancer’s metabolic phenotype // Int. J. Cancer. 2017. 142. (3). 440–448.

80. Roy K., Wu Y., Meitzler Jennifer L., Juhasz A., Liu H., Jiang G., Lu J., Antony S., Doroshow James H. NADPH oxidases and cancer // Clin. Sci. 2015. 128. (12). 863–875.

81. Rybstein M.D., Bravo-San Pedro J.M., Kroemer G., Galluzzi L. The autophagic network and cancer // Nat. Cell Biol. 2018. 20. (3). 243–251.

82. Scialò F., Fernández-Ayala D.J., Sanz A. Role of mitochondrial reverse electron transport in ROS signaling: Potential roles in health and disease // Front. Physiol. 2017. 8. 428.

83. Shibata T., Ohta T., Tong K.I., Kokubu A., Odogawa R., Tsuta K., Asamura H., Yamamoto M., Hirohashi S. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy // Proc. Natl. Acad. Sci. USA. 2008. 105. (36). 13568–13573.

84. Taguchi K., Motohashi H., Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution // Genes Cells. 2011. 16. (2). 123–140.

85. Takamura A., Komatsu M., Hara T., Sakamoto A., Kishi C., Waguri S., Eishi Y., Hino O., Tanaka K., Mizushima N. Autophagy-deficient mice develop multiple liver tumors // Genes Dev. 2011. 25. (8). 795–800.

86. Tanaka M., Miura Y., Numanami H., Karnan S., Ota A., Konishi H., Hosokawa Y., Hanyuda M. Inhibition of NADPH oxidase 4 induces apoptosis in malignant mesothelioma: Role of reactive oxygen species // Oncol. Rep. 2015. 34. (4). 1726–1732.

87. Teixeira G., Szyndralewiez C., Molango S., Carnesecchi S., Heitz F., Wiesel P., Wood J.M. Therapeutic potential of NADPH oxidase 1/4 inhibitors // Br. J. Pharmacol. 2017. 174. (12). 1647–1669.

88. Thomas D.C. How the phagocyte NADPH oxidase regulates innate immunity // Free Radic. Biol. Med. 2018. 125. 44–52.

89. Titova E., Shagieva G., Ivanova O., Domnina L., Domninskaya M., Strelkova O., Khromova N., Kopnin P., Chernyak B., Skulachev V., Dugina V. Mitochondriatargeted antioxidant SkQ1 suppresses fibrosarcoma and rhabdomyosarcoma tumour cell growth // Cell Cycle. 2018. 17. (14). 1797–1811.

90. Tripathi D.N., Walker C.L. The peroxisome as a cell signaling organelle // Curr. Opin. Cell. Biol. 2016. 39. 109–112.

91. Urra F.A., Muñoz F., Lovy A., Cárdenas C. The mitochondrial complex(I)ty of cancer // Frontiers in Oncology. 2017. 7. 118.

92. Walker C.L., Pomatto L.C.D., Tripathi D.N., Davies K.J.A. Redox regulation of homeostasis and proteostasis in peroxisomes // Physiol. Rev. 2018. 98. (1). 89–115.

93. Wang B., Fu J., Yu T., Xu A., Qin W., Yang Z., Chen Y., Wang H. Contradictory effects of mitochondria- and non-mitochondria-targeted antioxidants on hepatocarcinogenesis by altering DNA repair in mice // Hepatology. 2018. 67. (2). 623–635.

94. Wang Y.Y., Chen J., Liu X.M., Zhao R., Zhe H. Nrf2-mediated metabolic reprogramming in cancer // Oxid. Med. Cell. Longev. 2018. 2018. 9304091.

95. Wheaton W.W., Weinberg S.E., Hamanaka R.B., Soberanes S., Sullivan L.B., Anso E., Glasauer A., Dufour E., Mutlu G.M., Budigner G.R.S., Chandel N.S. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis // eLife. 2014. 3. e02242.

96. Wohlgemuth S.E., Calvani R., Marzetti E. The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology // J. Mol. Cell. Cardiol. 2014. 71. 62–70.

97. Wu W., Liu F., Wu K., Chen Y., Wu H., Dai G., Zhang W. Lon peptidase 2, peroxisomal (LONP2) contributes to cervical carcinogenesis via oxidative stress // Med. Sci. Mon. 2018. 24. 1310–1320.

98. Yamamoto T., Nakano H., Shiomi K., Wanibuchi K., Masui H., Takahashi T., Urano Y., Kamata T. Identification and characterization of a novel NADPH oxidase 1 (Nox1) inhibitor that suppresses proliferation of colon and stomach cancer cells // Biol. Pharm. Bull. 2018. 41. (3). 419–426.

99. Zhang J., Sun X., Wang L., Wong Y.K., Lee Y.M., Zhou C., Wu G., Zhao T., Yang L., Lu L., Zhong J., Huang D., Wang J. Artesunate-induced mitophagy alters cellular redox status // Redox Biol. 2018. 19. 263–273.

100. Zhou Y., Wu H., Zhao M., Chang C., Lu Q. The Bach family of transcription factors: A comprehensive review // Clin. Rev. Allergy Immunol. 2016. 50. (3). 345–356.


Для цитирования:


Зенков Н.К., Кожин П.М., Вчерашняя А.В., Мартинович Г.Г., Кандалинцева Н.В., Меньщикова Е.Б. Особенности редокс-регуляции в опухолевых клетках. Сибирский научный медицинский журнал. 2019;39(2):11-26. https://doi.org/10.15372/SSMJ20190202

For citation:


Zenkov N.K., Kozhin P.M., Vcherashnyaya A.V., Martinovich G.G., Kandalintseva N.V., Menshchikova E.B. FEATURES OF REDOX REGULATION IN TUMOR CELLS. Siberian Scientific Medical Journal. 2019;39(2):11-26. (In Russ.) https://doi.org/10.15372/SSMJ20190202

Просмотров: 204


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)