Synthetic antioxidant TS-13 reduces doxorubicin cardiotoxicity
https://doi.org/10.18699/SSMJ20230511
Abstract
The antitumor antibiotic doxorubicin, a representative of a large group of anthriacyclines, is widely and quite effectively used to treat patients with malignant neoplasms. The aim of this study was to study the effect of TS-13, a synthetic phenolic antioxidant and an activator of the antioxidant-responsive element redox-sensitive signaling system Keap1/ Nrf2/ARE, on the functional parameters of an isolated rat heart after a course of doxorubicin administration. Material and methods. Male Wistar rats (n = 24) were divided into three groups: control (n = 10), doxorubicin group (n = 7) (3 weekly intraperitoneal injections of doxorubicin solution at a cumulative dose of 15 mg/kg) and doxorubicin + TS-13 (n = 7) (administration of doxorubicin according to a similar scheme, TS-13 solution with drinking water). On the 21st day after the start of the experiment, the cardioprotective effect of TS-13 was assessed on the ex vivo model of perfusion of the heart isolated according to Langendorff. Coronary flow, heart rate (HR), pressure in the left ventricle (myocardial contractility) were recorded as parameters of myocardial functional activity; the integral indicator of myocardial contractility (working capacity) was calculated as the product of HR and pressure in the left ventricle. Results and discussion. The general toxic effect of doxorubicin was manifested in a significant decrease in rat body weight (by 21 %), the administration of TS-13 reduced the cachectic effect of the cytostatic. Doxorubicin worsened heart work by all studied parameters (coronary flow, HR, myocardial contractility and integral index of contractility); the effect persisted throughout the entire perfusion period (40 min). Animals treated with intraperitoneal injections of doxorubicin and TS-13 per os lost weight to a lesser extent, the functional activity of isolated hearts improved significantly – coronary flow, pressure in the left ventricle, and working capacity increased. Conclusions. Since, as we have shown earlier, TS-13 administration not only does not cancel, but even potentiates the antitumor activity of doxorubicin, the results obtained indicate the promise of using TS-13 as an adjuvant therapy for malignant neoplasms, enhancing the antitumor effect of the cytostatic and leveling its side effects, including cardiotoxicity.
Keywords
About the Authors
E. B. MenshchikovaRussian Federation
doctor of medical sciences
630117 Novosibirsk, Timakova st. 2
R. A. Knyazev
Russian Federation
candidate of biological sciences
630117 Novosibirsk, Timakova st. 2
630126 Novosibirsk, Vilyuiskaya st. 28
N. V. Trifonova
Russian Federation
630117 Novosibirsk, Timakova st. 2
N. A. Deeva
Russian Federation
630117 Novosibirsk, Timakova st. 2
A. R. Kolpakov
Russian Federation
630117 Novosibirsk, Timakova st. 2
L. P. Lidia P. Romakh
Russian Federation
630117 Novosibirsk, Timakova st. 2
N. V. Kandalintseva
Russian Federation
630126 Novosibirsk, Vilyuiskaya st. 28
References
1. Liu X. An overview of doxorubicin in cancer therapy. J. Cancer Res. Immunooncol. 2021;(S2):e001. doi: 10.35248/2684-1266.21.s2.e001
2. Thorn C.F., Oshiro C., Marsh S., Hernandez-Boussard T., McLeod H., Klein T.E., Altman R.B. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet. Genomics. 2011;21(7):440–446. doi: 10.1097/FPC.0b013e32833ffb56
3. Kciuk M., Gielecinska A., Mujwar S., Kolat D., Kaluzinska-Kolat Z., Celik I., Kontek R. Doxorubicin – an agent with multiple mechanisms of anticancer activity. Cells. 2023;12(4):659. doi: 10.3390/cells12040659
4. Chaulin A.M., Duplyakov D.V. Cardioprotective strategies for doxorubicin-induced cardiotoxicity: present and future. Ratsional’naya farmakoterapiya v kardiologii = Rational Pharmacotherapy in Cardiology. 2022;18(1):103–112. [In Russian]. doi: 10.20996/18196446-2022-02-11
5. Ling G., Wang X., Tan N., Cao J., Li W., Zhang Y., Jiang J., Sun Q., Jiang Y., Wang W., Wang Y. Mechanisms and drug intervention for doxorubicininduced cardiotoxicity based on mitochondrial bioenergetics. Oxid. Med. Cell. Longev. 2022;2022:7176282. doi: 10.1155/2022/7176282
6. Hesari M., Shackebaei D., Asadmobini A. Protective effect of paracetamol in doxorubicin-induced cardiotoxicity in ischemia/reperfused isolated rat heart. Anatol. J. Cardiol. 2018;19(2):94–99. doi: 10.14744/AnatolJCardiol.2017.8038
7. Radonjic T., Rankovic M., Ravic M., Zivkovic V., Srejovic I., Jeremic J., Jeremic N., Sretenovic J., Matic S., Jakovljevic V., Nikolic Turnic T. The effects of thiamine hydrochloride on cardiac function, redox status and morphometric alterations in doxorubicintreated rats. Cardiovasc. Toxicol. 2020;20(2):111–120. doi: 10.1007/s12012-019-09536-7
8. Zhang S., Wei X., Zhang H., Wu Y., Jing J., Huang R., Zhou T., Hu J., Wu Y., Li Y., You Z. Doxorubicin downregulates autophagy to promote apoptosis-induced dilated cardiomyopathy via regulating the AMPK/mTOR pathway. Biomed. Pharmacother. 2023;162:114691. doi: 10.1016/j.biopha.2023.114691
9. Shi S., Chen Y., Luo Z., Nie G., Dai Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun. Signal. 2023;21(1):61. doi: 10.1186/s12964023-01077-5
10. Mirzaei S., Zarrabi A., Hashemi F., Zabolian A., Saleki H., Azami N., Hamzehlou S., Farahani M.V., Hushmandi K., Ashrafizadeh M., Khan H., Kumar A.P. Nrf2 signaling pathway in chemoprotection and doxorubicin resistance: Potential application in drug discovery. Antioxidants (Basel). 2021;10(3):349. doi: 10.3390/antiox10030349
11. Chen Y., Shi S., Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed. Pharmacother. 2022;156:113903. doi: 10.1016/j.biopha.2022.113903
12. Lakomkin V.L., Kapelko V.I. Protective effect of mitochondrial antioxidant SkQ1 at cardiac ischemia and reperfusion. Kardiologiya = Cardiology. 2009;49(10):55–60. [In Russian].
13. Karakuyu N.F., Savran M., Candan I.A., Buyukbayram H.I., Erzurumlu Y. Investigation of cardioprotective effect of lercanidipine on doxorubicininduced cardiotoxicity. Naunyn Schmiedebergs Arch. Pharmacol. 2023. doi: 10.1007/s00210-023-02566-7
14. Yarmohammadi F., Rezaee R., Karimi G. Natural compounds against doxorubicin-induced cardiotoxicity: A review on the involvement of Nrf2/ARE signaling pathway. Phytother. Res. 2021;35(3):1163–1175. doi: 10.1002/ptr.6882
15. Menshchikova E.B., Chechushkov A.V., Kozhin P.M., Kholshin S.V., Kandalintseva N.V., Martinovich G.G., Zenkov N.K. Activation of autophagy and Nrf2 signaling in human breast adenocarcinoma MCF-7 cells by novel monophenolic antioxidants. Cell Tissue Biol. 2019;13(2):85–92. doi: 10.1134/S1990519X1902007X
16. Zenkov N.K., Menshchikova E.B., Kandalintseva N.V., Oleynik A.S., Prosenko A.E., Gusachenko O.N., Shklyaeva O.A., Vavilin V.A., Lyakhovich V.V. Antioxidant and antiinflammatory activity of new water-soluble sulfur-containing phenolic compounds. Biochemistry (Mosc.). 2007;72(6):644–651. doi: 10.1134/S0006297907060077
17. Gaynutdinov P.I., Kozhin P.M., Chechushkov A.V., Martinovich G.G., Kholshin S.V., Kandalintseva N.V., Zenkov N.K., Menshchikova E.B. Inverse relationship between antioxidant activity of structurally related synthetic monophenols and their toxicity in tumor cells. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2018;38(1):22–31. [In Russian]. doi: 10.15372/SSMJ20180104
18. Oleynik A.S., Kuprina T.S., Pevneva N.Y., Markov A.F., Kandalintseva N.V., Prosenko A.E., Grigoriev I.A. Synthesis and antioxidant properties of sodium S-[3-(hydroxyaryl)propyl] thiosulfates and [3-(hydroxyaryl)propane]-1-sulfonates. Russ. Chem. Bull. 2007;58(6):1135–1143. doi: 10.1007/s11172-0070172-3
19. Ulusan S., Gulle K., Peynirci A., Sevimli M., Karaibrahimoglu A., Kuyumcu M.S. Dapagliflozin may protect against doxorubicin-induced cardiotoxicity. Anatol. J. Cardiol. 2023;27(6):339–347. doi: 10.14744/AnatolJCardiol.2023.2825
20. Sakr H.F., Abbas A.M., Elsamanoudy A.Z. Effect of valsartan on cardiac senescence and apoptosis in a rat model of cardiotoxicity. Can. J. Physiol. Pharmacol. 2016;94(6):588–598. doi: 10.1139/cjpp-2015-0461
21. King D.R., Hardin K.M., Hoeker G.S., Poelzing S. Reevaluating methods reporting practices to improve reproducibility: an analysis of methodological rigor for the Langendorff whole heart technique. Am. J. Physiol. Heart Circ. Physiol. 2022;323(3):H363–H377. doi: 10.1152/ajpheart.00164.2022
22. Knyazev R.A., Trifonova N.V., Ryabchenko A.V., Kotova M.V., Kolpakov A.R., Polyakov L.M. Impact of recombinant apolipoprotein A-I on myocardial function in experiment. Patologiya krovoobrashcheniya i kardiokhirurgiya = Circulation Pathology and Cardiac Surgery. 2018;22(4):88–94. [In Russian]. doi: 10.21688/1681-3472-2018-4-88-94
23. Menshchikova E.B., Zenkov N.K., Kozhin P.M., Chechushkov A.V., Kovner A.V., Khrapova M.V., Kandalintseva N.V., Martinovich G.G. Synthetic phenolic antioxidant TS-13 suppresses the growth of Lewis lung carcinoma and potentiates oncolytic effect of doxorubicin. Bull. Exp. Biol. Med. 2019;166(5):646–650. [In Russian]. doi: 10.1007/s10517-019-04410-6
24. Bogatyrenko T.N., Kandalintseva N.V., Sashenkova T.E., Allayarova U.Yu., Mishchenko D.V. Hydrophilic sulfur-containing antioxidant sodium 3-(3-tert-butyl4-hydroxyphenyl)propylthiosulfate as a modulator of the activity of antitumor cytostatics and their combinations with a NO donor. Russ. Chem. Bull. 2022;71:517– 523. doi: 10.1007/s11172-022-3442-1
25. Pedrosa M.B., Barbosa S., Vitorino R., Ferreira R., Moreira-Goncalves D., Santos L.L. Chemotherapy-induced molecular changes in skeletal muscle. Biomedicines. 2023;11(3):905. doi: 10.3390/biomedicines11030905
26. Dirks-Naylor A.J. The role of autophagy in doxorubicin-induced cardiotoxicity. Life Sci. 2013;93(24):913–916.
27. Sun B., Xu Y., Liu Z.Y., Meng W.X., Yang H. Autophagy assuages myocardial infarction through Nrf2 signaling activation-mediated reactive oxygen species clear. Eur. Rev. Med. Pharmacol. Sci. 2020;24(13):7381–7390. doi: 10.26355/eurrev_202007_21906
28. Roberts J.A., Rainbow R.D., Sharma P. Mitigation of cardiovascular disease and toxicity through NRF2 signalling. Int. J. Mol. Sci. 2023;24(7):6723. doi: 10.3390/ijms24076723
29. Doenst T., Nguyen T.D., Abel E.D. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res. 2013;113(6):709–724. doi: 10.1161/CIRCRESAHA.113.300376
30. Chen Y., Saari J.T., Kang Y.J. Weak antioxidant defenses make the heart a target for damage in copperdeficient rats. Free Radic. Biol. Med. 1994;17(6):529– 536. doi: 10.1016/0891-5849(94)90092-2
31. Malavolta M., Bracci M., Santarelli L., Sayeed M.A., Pierpaoli E., Giacconi R., Costarelli L., Piacenza F., Basso A., Cardelli M., Provinciali M. Inducers of senescence, toxic compounds, and senolytics: The multiple faces of Nrf2-activating phytochemicals in cancer adjuvant therapy. Mediators Inflamm. 2018;2018:4159013. doi: 10.1155/2018/4159013
32. Menshchikova E.B., Tkachev V.O., Zenkov N.K., Lemza A.E., Sharkova T.V., Kandalintseva N.V. Anti-inflammatory activity of TS-13, AREinducing phenol antioxidant. Bull. Exp. Biol. Med. 2013;155(3):366–369. doi: 10.1007/s10517-013-2155-8
33. Menshchikova E.B., Zenkov N.K., Weisman N.Y., Kandalintseva N.V., Prosenko A.E. Effect of phenol inducing the antioxidant responsive element on Drosophila melanogaster lifespan. Bull. Exp. Biol. Med. 2010;150(1):65–67. doi: 10.1007/s10517-0101070-5