Роль адаптерного белка нейрональной NO-синтазы в патогенезе метаболического синдрома и сахарного диабета 2 типа
https://doi.org/10.18699/SSMJ20230504
Аннотация
Патогенез метаболического синдрома (МС) характеризуется ожирением, гипертонией, дислипидемией и инсулинорезистентностью. МС увеличивает риск развития сахарного диабета 2-го типа (СД2). Для нейрональной изоформы синтазы оксида азота (nNOS) характерны сложные белок-белковые взаимодействия, так как nNOS, в отличие от других изоформ NOS, содержит C-концевой домен PDZ, позволяющий ей сопрягаться с другими белками. Для этого домена характерно взаимодействие с адаптерным белком, называемым в нашей работе адаптер нейрональной, или типа 1, синтазы оксида азота (NOS1AP), также обозначаемым как CAPON. Изменение взаимодействия между nNOS и NOS1AP приводит к нарушению метаболизма в мозге, сердце, печени и скелетных мышцах, что играет ключевую роль при развитии МС и СД2. NOS1AP, взаимодействуя c доменом PDZ nNOS, конкурирует с белком постсинаптической плотности (PSD95) и регулирует стабильность субклеточной локализации nNOS и экспрессию фермента при формированиия синапсов. NOS1AP способствует связыванию nNOS с такими мишенями, как малая ГТФаза (Dexras1) и синапсины, регулирует образование дендритных корешков, опосредует активацию пути «nNOS – p38MAP-киназа» при эксайтотоксичности. Показано, что однонуклеотидный полиморфизм гена NOS1AP или его избыточная экспрессия в миокарде приводит к проявлению синдрома удлиненного интервала QT, что проявляется у пожилых пациентов с СД2. Обнаружено, что полиморфизм гена NOS1AP влияет на секрецию инсулина при использовании блокаторов кальциевых каналов и может способствовать развитию СД2. Обнаружена функциональная роль NOS1AP в стабилизации функций nNOS скелетных мышц в цитоскелетном комплексе, связанном с дистрофином/утрофином. Цель обзора – предоставить обновленную информацию о роли NOS1AP и комплекса nNOS/NOS1AP в патогенезе МС и СД2. Обсуждаются потенциальные молекулярные механизмы взаимодействия NOS1AP с nNOS и другими белками, что приводит к изменению активности nNOS, ее локализации и уровня NO.
Ключевые слова
Об авторах
Л. А. КузнецоваРоссия
д.б.н.
194223, г. Санкт-Петербург, пр. Тореза, 44
Н. Е. Басова
Россия
к.б.н.
194223, г. Санкт-Петербург, пр. Тореза, 44
Список литературы
1. Samson S.L., Garber A.J. Metabolic syndrome. Endocrinol. Metab. Clin. North. Am. 2014;43(1):1–23. doi: 10.1016/j.ecl.2013.09.009
2. Rizvi A.A., Stoian A.P., Rizzo M. Metabolic syndrome: from molecular mechanisms to novel therapies. Int. J. Mol. Sci. 2021;22(18):10038. doi: 10.3390/ijms221810038
3. Rizvi A.A. Cytokine biomarkers, endothelial inflammation, and atherosclerosis in the metabolic syndrome: Emerging concepts. Am. J. Med. Sci. 2009;338(4):310–318. doi: 10.1097/MAJ.0b013e3181a4158c
4. Кузнецова Л.А., Шпаков А.О. Адипокины и их возможная роль в ожирении и сахарном диабете 2-го типа. Сарат. науч.-мед. ж. 2018,14(2);201–206.
5. Кузнецова Л.А. Метаболический синдром: влияние адипокинов на L-аргинин-NO-синтаза-NO сигнальный путь. Acta Biomed. Sci. 2021;6(2):22–40. doi: 10.29413/ABS.2021-6.2.3
6. Freudenberg F., Alttoa A., Reif А. Neuronal nitric oxide synthase (NOS1) and its adaptor, NOS1AP, as a genetic risk factors for psychiatric disorders. Genes Brain Behav. 2015;14(1):46–63. doi: 10.1111/gbb.12193
7. Kuznetsova L.A., Basova N.E., Shpakov A.O. Neuronal nitric oxide synthase in pathogenesis of metabolic syndrome. Cell Tissues Biololgy. 2023;17(1):1– 15. doi: 10.1134/S199905119X23010108
8. Courtney M.J., Li L.L., Lai Y.Y. Mechanisms of NOS1AP action on NMDA receptor-nNOS signaling. Front. Cell. Neurosci. 2014;8:252. doi: 10.3389/fncel.2014.00252
9. Jemth P., Gianni S. PDZ domains: folding and binding. Biochemistry. 2007;46(30):8701–8708. doi: 10.1021/bi7008618
10. Jaffrey S.R., Snowman A.M., Eliasson M.J., Cohen N.A., Snyder S.H. CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron. 1998;20(1):115–124. doi: 10.1016/S0896-6273(00)80439-0
11. Jaffrey S.R., Benfenati F., Snowman A.M., Czernik A.J., Snyder S.H. Neuronal nitric-oxide synthase localization mediated by a ternary complex with synapsin and CAPON. Proc. Natl. Acad. Sci. USA. 2002;99(5):3199–3204. doi: 10.1073/pnas.261705799
12. Fang M., Jaffrey S.R., Sawa A., Ye K., Luo X., Snyder S.H. Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron. 2000;28(1):183–193. doi: 10.1016/S08966273(00)00095-7
13. Ronchi C., Bernardi J., Mura M., Stefanello M., Badone B., Rocchetti M., Crotti L., Brink P., Schwartz P.J., Gnecchi M., Zaza A. NOS1AP polymorphisms reduce NOS1 activity and interact with prolonged repolarization in arrhythmogenesis. Cardiovasc. Res. 2021;117(2):472–483. doi: 10.1093/cvr/cvaa036
14. Wang T., Song J.F., Zhou X.Y., Li C.L., Yin X.X., Lu Q. PPARD rs2016520 (T/C) and NOS1AP rs12742393 (A/C) polymorphisms affect therapeutic efficacy of nateglinide in Chinese patients with type 2 diabetes mellitus. BMC Med. Genomics. 2021;14(1):267. doi: 10.1186/s12920-021-01108-5
15. Gheibi S., Ghasemi A. Insulin secretion: the nitric oxide controversy. EXCLI J. 2020;19:1227–1245. doi: 10.17179/excli2020-2711
16. Majmundar A.J., Buerger F., Fobes T.A., Klambt V., Schneider R., Deutsch K., Kitzler T.M., Howden S.E., Scurr M., Tan K.S., … Hildebrand F. Recessive NOS1AP variants impair actin remodeling and cause glomerulopathy in humans and mice. Science Advances. 2021;7(1):1386. doi: 10.1126/sciadv.abe1386
17. Richier L., Williton K., Clattenburg L., Colwill K., O’Brien M., Tsang C., Kolar A., Zinck N., Metalnikov P., Trimble W.S., … Fawcett J.P. NOS1AP associates with Scribble and regulates dendritic spine development. J. Neurosci. 2010;30(13):4796–4805. doi: 10.1523/JNEUROSCI.3726-09.2010
18. Hernandez K., Swiatkowski P., Patel M.V., Liang C., Dudzinski N.R., Brzustowicz L.M., Firestein B.L. Overexpression of isoforms of nitric oxide synthase 1 adaptor protein, encoded by a risk gene for schizophrenia, alters actin dynamics and synaptic function. Front. Cell. Neurosci. 2016;10:6. doi: 10.3389/fncel.2016.00006
19. Clattenburg L., Wigerius M., Qi J., Rainey J.K., Rourke J.L., Muruganandan S., Sinal C.J., Fawcett J.P. NOS1AP functionally associates with YAP to regulate Hippo signaling. Mol. Cell. Biol. 2012;35(13):2265– 2277. doi: 10.1128/MCB.00062-15
20. Sugiyama K., Sasano T., Kurokawa J., Takahashi K., Okamura T., Kato N., Isobe M., Furukawa T. Oxidative stress induced ventricular arrhythmia and impairment of cardiac function in Nos1ap deleted mice. Int. Heart J. 2016;57(3):341–349. doi: 10.1536/ihj.15471
21. Brzustowicz L.M. NOS1AP in schizophrenia. Curr. Psychiatry Rep. 2008;10(2):158–163. doi: 10.1007/S11920-008-0027-0
22. Cordenonsi M., Zanconato F., Azzolin L., Forcato M., Rosato A., Frasson C., Inui M., Montagner M., Parenti A.R., Poletti A., … Piccolo S. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147(4):759–772. doi: 10.1016/j.cell.2011.09.048
23. Mohseni M., Sun J., Lau A.., Curtis S., Goldsmith J., Fox V.L., Wei C., Frazier M., Samson O., Wong K.K., Kim C., Camargo F.D. A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat. Cell Biol. 2014;16(1):108–117. doi: 10.1038/ncb2884
24. Anastas J.N., Biechele T.L., Robitaille M., Muster J., Allison K.H., Angers S., Moon R.T. A protein complex of SCRIB, NOS1AP and VANGL1 regulates cell polarity and migration, and is associated with breast cancer progression. Oncogene. 2012;31(32):3696– 3708. doi: 10.1038/onc.2011.528
25. Doucet M.V., Harkin A., Dev K.K. The PSD95/nNOS complex: new drugs for depression? Pharmacol. Ther. 2012;133(2):218–229. doi: 10.1016/j.pharmthera.2011.11.005
26. Weber H., Klamer D., Freudenberg F., KittelSchneider S., Rivero O., Scholz C.J., Volkert J., Kopf J., Heupel J., Herterich S., … Reif A. The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia: further evidence and meta-analysis. Eur. Neuropsychopharmacol. 2014;24(1):65– 85. doi: 10.1016/j.euroneuro.2013.09.005
27. Zhou L., Zhu D.Y. Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide. 2009;20(4):223– 230. doi: 10.1016/j.niox.2009.03.001
28. Liang D., Song Y., Fan G., Ji D., Zhang T., Nie E., Liu X., Liang J., Yu R., Gao S. Effects of Long Form of CAPON Overexpression on glioma cell proliferation are dependent on AKT/mTOR/P53 signaling. Int. J. Med. Sci. 2019;16(4):614–622. doi: 10.7150/ijms.31579
29. Cheah J.H., Kim S.F., Hester L.D., Clancy K.W., Patterson S.E., Papadopoulos V., Solomon H., Snyder S.H. NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron. 2006;51(4):431–440. doi: 10.1016/j.neuron.2006.07.011
30. Chen Y., Khan R.S., Cwanger A., Song Y., Steenstra C., Bang S., Cheah J.H., Dunaief J., Shindler K.S., Snyder S.H., Kim S.F. Dexras1, a small GTPase, is required for glutamate-NMDA neurotoxicity. J. Neurosci. 2013;33(8):3582–3587. doi: 10.1523/JNEUROSCI.1497-12.2013
31. Blumer J.B., Cismowski M.J., Sato M., Lanier S.M. AGS proteins: receptor-independent activators of G-protein signaling. Trends Pharmacol. Sci. 2005;26(9):470–476. doi: 10.1016/j.tips.2005.07.003
32. Cismowski M.J., Ma C., Ribas C., Xie X., Spruyt M., Lizano J.S., Lanier S.M., Duzic E. Activation of heterotrimeric G-protein signaling by a ras-related protein: implications for signal integration. J. Biol. Chem. 2000;275(31):23421–23424. doi: 10.1074/jbc.C000322200
33. Li H., Degenhardt B., Tobin D., Yao Z.X., Tasken K., Papadopoulos V. Identification, localization, and function in steroidogenesis of PAP7: a peripheral-type benzodiazepine receptorand PKA (RIalpha)-associated protein. Mol. Endocrinol. 2001;15(2):2211–2228. doi: 10.1210/mend.15.12.0736
34. Carlson G.C., Lin R.E., Chen Y., Brookshire B.R., White R.S., Lucki I., Siegel S.J., Kim S.F. Dexras1 a unique ras-GTPase interacts with NMDA receptor activity and provides a novel dissociation between anxiety, working memory and sensory gating. Neuroscience. 2016;322:408–415. doi: 10.1016/j.neuroscience.2016.02.063
35. Jaffrey S.R., Benfenati F., Snowman A.M., Czernik A.J., Snyder S.H. Neuronal nitric-oxide synthase localization mediated by a ternary complex with synapsin and CAPON. Proc. Natl. Acad. Sci. USA. 2002;99(5):3199–3204. doi: 10.1073/pnas.261705799
36. Gao S., Zhang T., Jin L., Liang D., Fan G., Song Y., Lucassen PJ., Yu R., Swaab D.F. CAPON is a critical protein in synaptic molecular networks in the prefrontal cortex of mood disorder patients and contributes to depression-like behavior in a mouse model. Cereb. Cortex. 2019;29(9):3752-3765. doi: 10.1093/cercor/bhy254
37. Gao S., Wang J., Zhang T., Liu G., Jin L., Ji D., Wang P., Meng Q., Zhu Y., Yu R. Low expression of CAPON in glioma contributes to cell proliferation via the akt signaling pathway. Int. J. Mol. Sci. 2016:17(11):1859. doi: 10.3390/ijms17111859
38. Li L.L., Ginet V., Liu X., Vergun O., Tuittila M., Mathieu M., Bonny C., Puyal J., Truttmann A.C., Courtney M.J. The nNOS-p38MAPK pathway is mediated by nos1ap during neuronal death. J. Neurosci. 2013;33(19):8185–8201. doi: 10.1523/JNEUROSCI.4578-12.2013
39. Arking D.E., Pfeufer A., Post W., Kao W.H., Newton-Cheh C., Ikeda M., West K., Kashuk C., Akyol M., Perz S., … Chakravarti A. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat. Genet. 2006;38(6):644–651. doi: 10.1038/ng1790
40. Prokopenko I., Zeggini E., Hanson R.L., Mitchell B.D., Rayner N.W., Akan P., Baier L., Das S.K., Elliott K.S., Fu M., … International Type 2 Diabetes 1q Consortium. Linkage disequilibrium mapping of the replicated type 2 diabetes linkage signal on chromosome 1q. Diabetes. 2009;58(7):1704–1709. doi: 10.2337/db09-0081
41. Lehtinen A.B., Newton-Cheh C., Ziegler J.T., Langefeld C.D., Freedman B.I., Daniel K.R., Herrington D.M., Bowden D.W. Association of NOS1AP genetic variants with QT interval duration in families from the Diabetes Heart Study. Diabetes. 2008;57(4):1108– 1114. doi: 10.2337/db07-1365
42. Atochin D.N.., Clark J., Demchenko I.T., Moskowitz M.A., Huang P.L. Rapid cerebral ischemic preconditioning in mice deficient in endothelial and neuronal nitric oxide synthases. Stroke. 20003;34(5):1299–1303. doi: 10.1161/01.STR.0000066870.70976.57
43. Dickens M., Rogers J.S., Cavanagh J., Raitano A., Xia Z., Halpern J.R., Greenberg M.E., Sawyers C.L., Davis R.J. A cytoplasmic inhibitor of the JNK signal transduction pathway. Science. 1997;277(5326):693– 696. doi: 10.1126/science.277.5326.693
44. Semenova M.M., Mäki-Hokkonen A.M., Cao J., Komarovski V., Forsberg K.M., Koistinaho M., Coffey E.T., Courtney M.J. Rho mediates calcium-dependent activation of p38alpha and subsequent excitotoxic cell death. Nat. Neurosci. 2007;10(4):436–443. doi: 10.1038/nn1869
45. Cao J., Viholainen J.I., Dart C., Warwick H.K., Leyland M.L., Courtney M.J. The PSD-95-nNOS interface: a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death. J. Cell Biol. 2005;168(1):117–126. doi: 10.1083/jcb.200407024
46. Soriano F.X., Martel M.A., Papadia S., Vaslin A., Baxter P., Rickman C., Forder J., Tymianski M., Duncan R., Aarts M., Clarke P., Wyllie D.J., Hardingham G.E. Specific targeting of pro-death NMDA receptor signals with differing reliance on the NR2B PDZ ligand. J. Neurosci. 2008;28(42):10696–10710. doi: 10.1523/JNEUROSCI.1207-08.2008
47. Schepens J., Cuppen E., Wieringa B., Hendriks W. The neuronal nitric oxide synthase PDZ motif binds to -G(DE)XV* carboxyterminal sequences. FEBS Lett. 1997;409(1):53–56. doi: 10.1016/S00145793(97)00481-X
48. Stricker N.L., Christopherson K.S., Yi B.A., Schatz P.A., Raab R.W., Dawes G., Bassett D.E., Bredt D.S., Li M. PDZ domain of neuronal nitric oxide synthase recognises novel C-terminal peptide sequences. Nat. Biotech. 1997;15(4):336–342. doi: 10.1038/nbt0497-336
49. Li L.L., de Mera R.M.M.F., Chen J., Ba W., Kasri N.N., Zhang M., Countney M.J. Unexpected heterodivalent recruitment of NOS1AP to nNOS reveals multiple sites for pharmacological intervention in neuronal disease models. J. Neurosci. 2015;35(19):7349– 7364. doi: 10.1523/JNEUROSCI.0037-15.2015
50. Auer D.R., Sysa-Shah P., Bedja D., Simmers J.L., Pak E., Dutra A., Cohn R., Gabrielson K.L., Chakravarti A., Kapoor A. Generation of a cre recombinase-conditional Nos1ap over-expression transgenic mouse. Biotechnol. Lett. 2014;36(6):1179–1185. doi: 10.1007/s10529-014-1473-x
51. Newton-Cheh С., Eijgelsheim M., Rice K.R., de Bakker P.I.W., Yin X., Estrada K., Bis J.C., Marciante K., Rivadeneira F., Noseworthy P.A., ….Stricker B.H.C. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet. 2009;41(4):399–406. doi: 10.1038/ng.364
52. Pfeufer S., Sanna D.E., Arking M., Müller V., Gateva C., Fuchsberger G.B., Ehret G.B., Orru M., Pattaro C., Kṏttgen A.,….Chakravarti A. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat. Genet. 2009;41(4):407–414. doi: 10.1038/ng.362
53. Becker M.L., Aarnoudse A.J., Newton-Cheh C., Hofman A., Witteman J.C., Uitterlinden A.G., Visser L.E., Stricker B.H. Common variation in the NOS1AP gene is associated with reduced glucose-lowering effect and with increased mortality in users of sulfonylurea. Pharmacogenet. Genom. 2008;18(7):591–597. doi: 10.1097/FPC.0b013e328300e8c5
54. Aarts M., Liu Y., Liu L., Besshoh S., Arundine M., Gurd J. W., Wang Y.T., Salter M.W., Tymianski M. Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science. 2002;298(5594):846–850. doi: 10.1126/science.1072873
55. Ishii H., Shibuya K., Ohta Y., Mukai H., Uchino S., Takata N., Rose J.A., Kawato S. Enhancement of nitric oxide production by association of nitric oxide synthase with N-methyl-D-aspartate receptors via postsynaptic density 95 in genetically engineered Chinese hamster ovary cells: real-time fluorescence imaging using nitric oxide sensitive dye. J. Neurochem. 2006;96(6):1531–1539. doi: 10.1111/j.14714159.2006.03656.x
56. Christopherson K.S., Hillier B.J., Lim W.A., Bredt D.S. PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J. Biol. Chem. 1999;274(39):27467–27473. doi: 10.1074/jbc.274.39.27467
57. Eijgelsheim M., Newton-Cheh C., Aarnoudse A.L., van Noord C., Witteman J.C., Hofman A., Uitterlinden A.G., Stricker B.H. Genetic variation in NOS1AP is associated with sudden cardiac death: evidence from the Rotterdam study. Hum. Mol. Genet. 2009;18(21):4213–4218. doi: 10.1093/hmg/ddp356
58. Kao W.H., Arking D.E., Post W., Rea T.D., Sotoodehnia N., Prineas R.J., Bishe B., Doan B.Q., Boerwinkle E., Psaty B.M., … Chakravarti A. Genetic variations in nitric oxide synthase 1 adaptor protein are associated with sudden cardiac death in US white community-based populations. Circulation. 2009;119(7):940–951. doi: 10.1161/CIRCULATIONAHA.108.791723
59. Crotti L., Monti M.C., Insolia R., Peljto A., Goosen A., Brink P.A., Greenberg D.A., Schwartz P.J., George A.L.Jr. NOS1AP is a genetic modifier of the long-QT syndrome. Circulation. 2009;120(17):1657– 1663. doi: 10.1161/CIRCULATIONAHA.109.879643
60. Tomas M., Napolitano C., de Giuli L., Bloise R., Subirana I., Malovini A., Bellazzi R., Arking D.E., Marban E., Chakravarti A., Spooner P.M., Priori S.G. Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. J. Am. Coll. Cardiol. 2012;55(24):2745– 2752. doi: 10.1016/j.jacc.2009.12.065
61. Chang K.C., Barth A.S., Sasano T., Kizana E., Kashiwakura Y., Zhang Y., Foster D.B., Marban E. CAPON modulates cardiac repolarization via neuronal nitric oxide synthase signaling in the heart. Proc. Natl. Acad. Sci. USA. 2008;105(11):4477–4482. doi: 10.1073/pnas.0709118105
62. Kapoor A., Sekar R.B., Hansen N.F., Fox-Talbot K., Morley M., Pihur V., Chatterjee S., Brandimarto J., Moravec C.S., Pulit S.L. … Chakravarti A. An enhancer polymorphism at the cardiomyocyte intercalated disc protein NOS1AP locus is a major regulator of the QT interval. Am. J. Hum. Genet. 2014;94(6):854–869. doi: 10.1016/j.ajhg.2014.05.001
63. Schwartz P.J., Crotti L., George A.L. Modifier genes for sudden cardiac death. Eur. Heart J. 2018;39(44):3925–3931. doi: 10.1093/eurheartj/ehy502
64. Zang X., Zhang S., Li S., Wang X., Song W., Chen K., Ma J., Tu X., Xia Y., Zhao Y., Gao C. Evaluating common NOS1AP variants in patients with implantable cardioverter defibrillators for secondary prevention: evaluating SNPs in NOS1AP. J. Interv. Card. Electrophysiol. 2022;64(3):793–800. doi: 10.1007/s10840-022-01137-9
65. Earle N., Yeo H.D., Pilbrow A., Crawford J., Smith W., Shelling A.N., Cameron V., Love D.R., Skinner J.R. Single nucleotide polymorphisms in arrhythmia genes modify the risk of cardiac events and sudden death in long QT syndrome. Heart. Rhythm. 2014;11(1):76–82. doi: 10.1016/j.hrthm.2013.10.005
66. Zang X., Li S., Zhao Y., Chen K., Wang X., Song W., Ma J., Tu X., Xia Y., Zhang S., Gao C. Systematic meta-analysis of the association between a common NOS1AP genetic polymorphism, the QTs interval, and sudden death. Int. Heart J. 2019;60(5):1083–1090. doi: 10.1536/ihj.19-024
67. Whitsel E.A., Boyko E.J., Rautaharju P.M., Raghunathan T.E., Lin D., Pearce R.M., Weinmann S.A., Siscovick D.S. Electrocardiographic QT interval prolongation and risk of primary cardiac arrest in diabetic patients. Diabetes Care. 2005;28(8):2045–2047. doi: 10.2337/diacare.28.8.2045
68. Roden D.M. Drug-induced prolongation of the QT interval. N. Engl. J. Med. 2004;350(10):1013–1022. doi: 10.1056/NEJMra032426
69. Toba-Oluboka T., Tibbo P.G., Dempster K., Alda M. Genetic factors contribute to medicationinduced QT prolongation: A review. Psychiatry Res. Actions. 2022;317:114891. doi: 10.1016/j.psychres.2022.114891
70. Chu A.Y., Coresh J., Arking D.E., Pankow J.S., Tomaselli G.F., Chakravarti A., Post W.S., Spooner P.H., Boerwinkle E., Kao W.H.L. NOS1AP variant associated with incidence of type 2 diabetes in calcium channel blocker users in the Atherosclerosis Risk in Communities (ARIC) study. Diabetologia. 2010;53(3):510–516. doi: 10.1007/s00125-009-1608-0
71. Straus S.M., Kors J.A., de Bruin M.L., van der Hooft C.S., Hofman A., Heeringa J., Deckers J.W., Kingma J.H., Sturkenboom M.C., Stricker B.H., Witteman J.C. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J. Am. Coll Cardiol. 2006;47(2):362–367. doi: 10.1016/j.jacc.2005.08.067
72. Lengyel C., Virag L., Biro T., Jost N., Magyar J., Biliczki P., Kocsis E., Skoumal R., Nanasi P.P., Toth M., … Varro A. Diabetes mellitus attenuates the repolarization reserve in mammalian heart. Cardiovasc. Res. 2007;73(3):512–520. doi: 10.1016/j.cardiores.2006.11.010
73. Aarnoudse A.J., Newton-Cheh C., de Bakker P.I., Straus S.M., Kors J.A., Hofman A., Uitterlinden A.G., Witteman J.C., Stricker B.H. Common NOS1AP variants are associated with a prolonged QTc interval in the Rotterdam Study. Circulation. 2007;116(1):10–16. doi: 10.1161/CIRCULATIONAHA.106.676783
74. Post W., Shen H., Damcott C., Arking D.E., Kao W.H., Sack P.A., Ryan K.A., Chakravarti A., Mitchell B.D., Shuldiner A.R. Associations between genetic variants in the NOS1AP (CAPON) gene and cardiac repolarization in the old order Amish. Hum. Hered. 2007;64(4):214–219. doi: 10.1159/000103630
75. Lu J., Hu C., Hu W., Zhang R., Wang C., Qin W., Yu W., Xiang K. International Type 2 Diabetes 1q Consortium. Jia W. A common variant of NOS1AP is associated with QT interval duration in a Chinese population with Type 2 diabetes. Diabet Med. 2010;27(9):1074– 1079. doi: 10.1111/j.1464-5491.2010.03072.x
76. Jᾄnsch M., Lubomirov L.T., Trum M., Williams T., Schmitt J., Scuh K., Qadri F., Maier L.S., Bader M., Ritter O. Inducible over-expression of cardiac NOS1AP causes short QT syndrome in transgenic mice. FEBS Open Bio. 2023: 13(1):118–132. doi: 10.1002/2211-5463.13520
77. Birkenfeld A.L., Shulman G.I. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology. 2014;59(2):713–723. doi: 10.1002/hep.26672
78. Perry R.J., Samuel V.T., Petersen K.F., Shulman G.I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature. 2014;510(7503):84–91. doi: 10.1038/nature13478
79. Tai F.W., Syn W.K., Alazawi W. Practical approach to non-alcoholic fatty liver disease in patients with diabetes. Diabet Med. 2015;32(9):1121–1133. doi: 10.1111/dme.12725
80. Hu C., Wang C., Zhang R., Ng M.C., Bao Y., Wang C. Association of genetic variants of NOS1AP with type 2 diabetes in a Chinese population. Diabetologia. 2010;53(2):290–298. doi: 10.1007/s00125-0091594-2
81. Mu K., Sun Y., Zhao Y., Zhao T., Li Q., Zhang M., Li H., Zhang R., Hu C., Wang C., Jia W. Hepatic nitric oxide synthase 1 adaptor protein regulates glucose homeostasis and hepatic insulin sensitivity in obese mice depending on its PDZ binding domain. EBioMedicine. 2019;47:352–364. doi: 10.1016/j.ebiom.2019.08.033
82. Wratten N.S., Memoli H., Huang Y., Dulencin A.M., Matteson P.G., Cornacchia M.A. Identification of a schizophrenia-associated functional noncoding variant in NOS1AP. Am. J. Psychiatry. 2009;166(4):434–441. doi: 10.1176/appi.ajp.2008. 08081266
83. Rafael J.A., Brown S.C. Dystrophin and utrophin: genetic analyses of their role in skeletal muscle. Microsc. Res. Tech. 2000;48(3-4):155–166. doi: 10.1002/(SICI)1097-0029(20000201/15)48:3/4<155::AIDJEMT4>3.0.CO;2-0
84. Johnson E.K., Zhang L., Adams M.E., Phillips A., Freitas M.A., Froehner S.C., Green-Church K.B., Montanazo F. Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins. PLoS One. 2012;7(8):e43515. doi: 10.1371/journal.pone.0043515
85. Segalat L., Grisoni K., Archer J., Vargas C., Bertrand A., Anderson J.E. CAPON expression in skeletal muscle is regulated by position, repair, NOS activity, and dystrophy. Exp. Cell Res. 2005;302(2):170–179. doi: 10.1016/j.yexcr.2004.09.007
86. Suhr F., Gehlert S., Grau M., Bloch W. Skeletal muscle function during exercise-fine-tuning of diverse subsystems by nitric oxide. Int. J. Mol. Sci. 2013;14(4):7109–7139. doi: 10.3390/ijms14047109
87. Lai Y., Zhao J., Yue Y., Duan D. α2 and α3 helices of dystrophin R16 and R17 frame a microdomain in the α1 helix of dystrophin R17 for neuronal NOS binding. Proc. Natl. Acad. Sci. 2013;110(2):525–530. doi: 10.1073/pnas.1211431109
88. Balke J.E., Zhang L., Percival J.M. Neuronal nitric oxide synthase (nNOS) splice variant function: Insights into nitric oxide signaling from skeletal muscle. Nitric Oxide. 2019;82:35–47. doi: 10.1016/j. niox.2018.11.004
89. Wehling-Henricks M., Tidball J.G. Neuronal nitric oxide synthase-rescue of dystrophin/utrophin double knockout mice does not require nNOS localization to the cell membrane. PLoS One. 2011;6(10):e25071. doi: 10.1371/journal.pone.0025071
90. Terradas A.L.I., Vitadello M., Traini L., Namuduri A.V., Gastaldello S., Gorza L. Sarcolemmal loss of active nNOS (Nos1) is an oxidative stress-dependent, early event driving disuse atrophy. J. Pathol. 2018;246(4):433–446. doi: 10.1002/path.5149
91. Qin W., Zhang R., Hu C., Wang C.R., Lu J.Y., Yu W.H., Bao Y., Xiang K.; International Type 2 Diabetes 1q Consortium; Jia W. A variation in NOS1AP gene is associated with repaglinide efficacy on insulin resistance in type 2 diabetes of Chinese. Acta Pharmacol. Sin. 2010;31(4):450–454. doi: 10.1038/aps.2010.25
92. Beigi F., Oskouei B.N., Zheng M., Cook C.A., Lamirault G., Hare J.M. Cardiac nitric oxide synthase-1 localization within the cardiomyocyte is accompanied by the adapter protein, CAPON. Nitric Oxide. 2009;21(34):226–223. doi: 10.1016/j.niox.2009.09.005
93. Carrel D., Du Y., Komlos D., Hadzimichalis N.M., Kwon M., Wang B., Brzustowicz L.M., Firestein B.L. NOS1AP regulates dendrite patterning of hippocampal neurons through a carboxypeptidase E-mediated pathway. J. Neurosci. 2009;29(25):8248– 8258. doi: 10.1523/JNEUROSCI.5287-08.2009