Protein PRDM16 and its importance for adipose tissue (literature review)
https://doi.org/10.18699/SSMJ20230503
Abstract
Currently, in Russia and in the world, there is an increase in the proportion of overweight and obese people among the population, which contributes to an increase in the number of socially significant diseases. Obesity is associated with the predominance of the proportion of fat mass in the component composition of the body. Based on this, increased attention is paid to a comprehensive study of the functioning of all types of human adipose tissue, which is necessary for the further use of this knowledge in the fight against obesity. This article provides an overview of the literature data on the structure and properties of the PRDM16 gene, the features of its functioning in brown, white and beige adipose tissue. The influence of the PRDM16 gene on the activation of brown adipogenesis and the formation of beige adipocytes in white adipose tissue, which contribute to increased heat production of cells by means of non-contractile thermogenesis and improvement of metabolic parameters of the body, is considered. Data on the role of PRDM16 protein in the treatment of obesity, type 2 diabetes mellitus and other human diseases associated with it are analyzed. The results on the methods of effective activation of brown and beige adipocytes and the use of these methods in the treatment of obesity are presented.
About the Authors
L. N. AfanaskinaRussian Federation
candidate of biological sciences
660022, Krasnoyarsk, Partizana Zheleznyaka st., 1
S. N. Derevtsova
Russian Federation
doctor of medical sciences
660022, Krasnoyarsk, Partizana Zheleznyaka st., 1
T. N. Chekisheva
Russian Federation
660022, Krasnoyarsk, Partizana Zheleznyaka st., 1
N. N. Medvedeva
Russian Federation
doctor of medical sciences, professor
660022, Krasnoyarsk, Partizana Zheleznyaka st., 1
References
1. Afanaskina L.N., Derevtsova S.N., Sindeeva L.V., Hapilina E.A., Medvedevа N.N. Brown adipose tissue: features of biology, participation in energy metabolism and obesity (literature review). Vestnik Rossiyskoy akademii meditsinskikh nauk = Annals of the Russian Academy of Medical Sciences. 2020;75(4):326–330. [In Russian]. doi: 10.15690/vramn1316
2. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–2642. doi: 10.1016/S01406736(17)32129-3
3. Inoue Y., Qin B., Poti J., Gordon-Larsen P. Epidemiology of obesity in adults: latest trends. Curr. Obes. Rep. 2018;7(4):276–288. doi: 10.1007/s13679018-0317-8
4. Islam M.T., Henson G.D., Machin D.R., Bramwell R.C., Donato A.J., Lesniewski L.A. Aging differentially impacts vasodilation and angiogenesis in arteries from the white and brown adipose tissues. Exp. Gerontol. 2020;142:111126. doi: 10.1016/j.exger.2020.111126
5. Samuelson I., Vidal-Puig A. Studying brown adipose tissue in a human in vitro. Front. Endocrinol. (Lausanne). 2020;11:629. doi: 10.3389/fendo.2020.00629
6. Cheng L., Wang J., Dai H., Duan Y., An Y., Shi L., Lv Y., Li H., Wang C., Ma Q., … Zhao B. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte. 2021;10(1):48– 65. doi: 10.1080/21623945.2020.1870060
7. Chait A., den Hartigh L.J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front. Cardiovasc. Med. 2020;7:22. doi: 10.3389/fcvm.2020.00022
8. Egorov A.D., Penkov D.N., Tkachuk V.A. Molecular and cellular mechanisms of adipogenesis. Sakharnyy diabet = Diabetes Mellitus. 2015;18(2):12–19. [In Russian]. doi: 10.14341/DM2015212-19
9. Ott A.V., Chumakova G.A., Veselovskaya N.G. Epicardial obesity as one of the main criteria for the metabolic obese phenotype of obesity. Sibirskoe meditsinskoe obozrenie = Siberian Medical Review. 2017;(4):44–53. [In Russian]. doi: 10.20333/25001362017-4-44-53
10. Ladoux A., Peraldi P., Chignon-Sicard B., Dani C. Distinct shades of adipocytes control the metabolic roles of adipose tissues: from their origins to their relevance for medical applications. Biomedicines. 2021;9(1):40. doi: 10.3390/biomedicines9010040
11. Cohen P., Kajimura S. The cellular and functional complexity of thermogenic fat. Nat. Rev. Mol. Cell. Biol. 2021;22(6):393–409. doi: 10.1038/s41580021-00350-0
12. Bartelt A., Heeren J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 2014;10(1):24–36. doi: 10.1038/nrendo.2013.204
13. Koksharova E.O., Mayorov A.Yu., Shestakova M.V., Dedov I.I. Metabolic characteristics and therapeutic potential of brown and ‘beige’ adipose tissues. Sakharnyy diabet = Diabetes Mellitus. 2014;(4):5–15. [In Russian]. doi: 10.14341/DM201445-15
14. Park A., Kim W.K., Bae K.H. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J. Stem Cells. 2014;6(1):33– 42. doi: 10.4252/wjsc.v6.i1.33
15. Seale P., Bjork B., Yang W., Kajimura S., Chin S., Kuang S., Scimè A., Devarakonda S., Conroe H.M., Erdjument-Bromage H., … Spiegelman B.M. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454(7207):961–967. doi: 10.1038/nature07182
16. Timmons J.A., Wennmalm K., Larsson O., Walden T.B., Lassmann T., Petrovic N., Hamilton D.L., Gimeno R.E., Wahlestedt C., Baar K., Nedergaard J., Cannon B. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl. Acad. Sci. USA. 2007;104(11):4401–4406. doi: 10.1073/pnas.0610615104
17. Kajimura S., Seale P., Tomaru T., Erdjument-Bromage H., Cooper M.P., Ruas J.L., Chin S., Tempst P., Lazar M.A., Spiegelman B.M. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 2008;22(10):1397–1409. doi: 10.1101/gad.1666108
18. Tews D., Wabitsch M. Renaissance of brown adipose tissue. Horm. Res. Paediatr. 2011;75(4):231– 239. doi: 10.1159/000324806
19. Chechi K., van Marken Lichtenbelt W., Richard D. Brown and beige adipose tissues: phenotype and metabolic potential in mice and men. J. Appl. Physiol. 2018;124(2):482–496. doi: 10.1152/japplphysiol.00021.2017
20. Okla M., Kim J., Koehler K., Chung S. Dietary factors promoting brown and beige fat development and thermogenesis. Adv. Nutr. 2017;8(3):473–483. doi: 10.3945/an.116.014332
21. Drapkina O.M., Kim O.T. Is brown adipose tissue a new target for obesity therapy? Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2021;20(5): 134–138. [In Russian]. doi: 10.15829/1728-8800-2021-2860
22. Long J.Z., Svensson K.J., Tsai L., Zeng X., Roh H.C., Kong X., Rao R.R., Lou J., Lokurkar I., Baur W., … Spiegelman B.M. A smooth muscle-like origin for beige adipocytes. Cell Metab. 2014;19(5):810– 820. doi: 10.1016/j.cmet.2014.03.025
23. Contreras C., Nogueiras R., Diéguez C., Rahmouni K., López M. Traveling from the hypothalamus to the adipose tissue: The thermogenic pathway. Redox Biol. 2017;12:854–863. doi: 10.1016/j.redox.2017.04.019
24. Wankhade U.D., Shen M., Yadav H., Thakali K.M. Novel browning agents, mechanisms, and therapeutic potentials of brown adipose tissue. Biomed. Res. Int. 2016;2016:2365609. doi: 10.1155/2016/2365609
25. Huang L., Pan D., Chen Q., Zhu L.J., Ou J., Wabitsch M., Wang Y.X. Transcription factor Hlx controls a systematic switch from white to brown fat through Prdm16-mediated co-activation. Nat. Commun. 2017;8(1):68. doi: 10.1038/s41467-017-00098-2
26. Mori M., Nakagami H., Rodriguez-Araujo G., Nimura K., Kaneda Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 2012;10(4):e1001314. doi: 10.1371/journal.pbio.1001314
27. Ohno H., Shinoda K., Spiegelman B.M., Kajimura S. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metabolism. 2012;15(3):395–404. doi: 10.1016/j.cmet.2012.01.019
28. McMillan A.C., White M.D. Induction of thermogenesis in brown and beige adipose tissues: molecular markers, mild cold exposure and novel therapies. Curr. Opin. Endocrinol. Diabetes Obes. 2015;22(5):347– 352. doi: 10.1097/MED.0000000000000191
29. Seale P., Kajimura S., Yang W., Chin S., Rohas L.M., Uldry M., Tavernier G., Langin D., Spiegelman B.M. Transcriptional control of brown fat determination by PRDM16. Cell Metabolism. 2007;6(1):38–54. doi: 10.1016/j.cmet.2007.06.001
30. Kajimura S., Seale P., Kubota K., Lunsford E., Frangioni J.V., Gygi S.P., Spiegelman B.M. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex. Nature. 2009;460(7259):1154– 1158. doi: 10.1038/nature08262
31. Nedergaard J., Bengtsson T., Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 2007;293(2):444–452. doi: 10.1152/ajpendo.00691.2006
32. Cypess A.M., Lehman S., Williams G., Tal I., Rodman D., Goldfine A.B., Kuo F.C., Palmer E.L., Tseng Y.-H., Doria A., Kolodny G.M., Kahn C.R. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 2009;360(15):1509– 1517. doi: 10.1056/nejmoa0810780
33. Cereijo R., Giralt M., Villarroya F. Thermogenic brown and beige/brite adipogenesis in humans. Ann. Med. 2015;47(2):169–177. doi: 10.3109/07853890.2014.952328
34. Ouellet V., Labbe S.M., Blondin D.P., Phoenix S., Guérin B., Haman F., Turcotte E.E., Richard D., Carpentier A.C. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 2012;122(2):545. doi: 10.1172/JCI60433
35. Porter C., Chondronikola M., Sidossis L.S. The therapeutic potential of brown adipocytes in human. Front. Endocrinol. (Lausanne). 2015;6:156. doi: 10.3389/fendo.2015.00156
36. Muzik O., Mangner T.J., Leonard W.R., Kumar A., Janisse J., Granneman J.G. 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. J. Nucl. Med. 2013;54(4):523–531. doi: 10.2967/jnumed.112.111336
37. Chondronikola M., Volpi E., Borsheim E., Porter C., Annamalai P., Enerbäck S., Lidell M.E., Saraf M.K., Labbe S.M., Hurren N.M., … Sidossis L.S. Brown adipose tissue improves whole body glucose homeostasis and insulin sensitivity in humans. Diabetes. 2014;63(12):4089–4099. doi: 10.2337/db14-0746
38. Romantsova T.I. Adipose tissue: colors, depots and functions. Ozhireniye i metabolism = Obesity and Metabolism. 2021;18(3):282–301 [In Russian]. doi: 10.14341/omet12748
39. Moonen M.P.B., Nascimento E.B.M., van Marken Lichtenbelt W.D. Human brown adipose tissue: Underestimated target in metabolic disease? Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 2019;1864(1):104– 112. doi: 10.1016/j.bbalip.2018.05.012
40. Chondronikola M., Volpi E., Børsheim E., Porter C., Saraf M.K., Annamalai P., Yfanti C., Chao T., Wong D., Shinoda K., … Sidossis L.S. Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. Cell. Metab. 2016;23(6):1200–1206. doi: 10.1016/j.cmet.2016.04.029
41. Zoico E., Rubele S., de Caro A., Nori N., Mazzali G., Fantin F., Rossi A., Zamboni M. Brown and beige adipose tissue and aging. Front. Endocrinol. (Lausanne). 2019;10:368. doi: 10.3389/fendo.2019.00368
42. Sakellariou P., Valente A., Carrillo A.E., Metsios G.S., Nadolnik L., Jamurtas A.Z., Koutedakis Y., Boguszewski C., Andrade C.M.B., Svensson P.A., … Flouris A.D. Chronic l-menthol-induced browning of white adipose tissue hypothesis: A putative therapeutic regime for combating obesity and improving metabolic health. Med. Hypotheses. 2016;93:21–26. doi: 10.1016/j.mehy.2016.05.006
43. Roses E.D., Spiegelman B.M. What we talk about when we talk about fat? Cell. 2014;156(1-2):20– 44. doi: 10.1016/j.cell.2013.12.012
44. Li S., Mi L., Yu L., Yu Q., Liu T., Wang G.X., Zhao X.Y., Wu J., Lin J.D. Zbtb7b engages the long noncoding RNA Blnc1 to drive brown and beige fat development and thermogenesis. Proc. Natl. Acad. Sci. USA. 2017;114(34):E7111–E7120. doi: 10.1073/pnas.1703494114
45. Lund J., Larsen L.H., Lauritzen L. Fish oil as a potential activator of brown and beige fat thermogenesis. Adipocyte. 2018;7(2):88–95. doi: 10.1080/21623945.2018.1442980
46. Carpentier A.C., Blondin D.P., Virtanen K.A., Richard D., Haman F., Turcotte E.E. Brown adipose tissue energy metabolism in humans. Front. Endocrinol. (Lausanne). 2018;9:447. doi: 10.3389/fendo.2018.00447
47. Chevalier C., Stojanović O., Colin D.J., SuarezZamorano N., Tarallo V., Veyrat-Durebex C., Rigo D., Fabbiano S., Stevanović A., Hagemann S, … Trajkovski M. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163(6):1360–1374. doi: 10.1016/j.cell.2015.11.004
48. Rowan C.R., McManus J., Boland K., O’Toole A. Visceral adiposity and inflammatory bowel disease. Int. J. Colorectal. Dis. 2021;36(11):2305–2319. doi: 10.1007/s00384-021-03968-w
49. Cohen P., Levy J.D., Zhang Y., Frontini A., Kolodin D.P., Svensson K.J., Lo J.C., Zeng X., Ye L., Khandekar M.J., … Spiegelman B.M. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156(1-2):304–316. doi: 10.1016/j.cell.2013.12.021
50. Kaisanlahti A., Glumoff T. Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. J. Physiol. Biochem. 2019;75(1):1–10. doi: 10.1007/s13105-018-0658-5
51. Rajakumari S., Wu J., Ishibashi J., Lim H.W., Giang A.H., Won K.J., Reed R.R., Seale P. EBF2 determines and maintains brown adipocyte identity. Cell. Metabolism. 2013;17(4):562–574. doi: 10.1016/j.cmet.2013.01.015
52. Roth C.L., Molica F., Kwak B.R. Browning of white adipose tissue as a therapeutic tool in the fight against atherosclerosis. Metabolites. 2021;11(5):319. doi: 10.3390/metabo11050319
53. Dewal R.S., Stanford K.I. Effects of exercise on brown and beige adipocytes. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 2019;1864(1):71–78. doi: 10.1016/j.bbalip.2018.04.013
54. Kalinovich A.V., de Jong J.M., Cannon B., Nedergaard J. UCP1 in adipose tissues: two steps to full browning. Biochimie. 2017;134:127–137. doi: 10.1016/j.biochi.2017.01.007
55. Poursharifi P., Attanе C., Mugabo Y., AlMass A., Ghosh A., Schmitt C., Zhao S., Guida J., Lussier R., Erb H., … Prentki M. Adipose ABHD6 regulates tolerance to cold and thermogenic programs. JCI Insight. 2020;5(24):e140294. doi: 10.1172/jci.insight.140294
56. Lim J., Park H.S., Kim J., Jang Y.J., Kim J.H., Lee Y.J., Heo Y. Depot-specific UCP1 expression in human white adipose tissue and its association with obesity-related markers. Int. J. Obes. (Lond.). 2020;44(3):697–706. doi: 10.1038/s41366-020-0528-4
57. Liu L., Chen Y., Chen J., Lu M., Guo R., Han J., Zhang Y., Pei X., Ping Z. The relationship between PRDM16 promoter methylation in abdominal subcutaneous and omental adipose tissue and obesity. Clin. Nutr. 2021;40(4):2278–2284. doi: 10.1016/j.clnu.2020.10.016
58. Macartney-Coxson D., Benton M.C., Blick R., Stubbs R.S., Hagan R.D., Langston M.A. Genomewide DNA methylation analysis reveals loci that distinguish different types of adipose tissue in obese individuals. Clin. Epigenetics. 2017;9:48. doi: 10.1186/s13148-017-0344-4