The Keap1/Nrf2/ARE system activators do not increase cardiac resistance to long-term ischemia/reperfusion
https://doi.org/10.18699/SSMJ20220604
Abstract
Oxidative stress is an important mechanism of myocardial damage during ischemia/reperfusion. To investigate the possibility of restoring the redox balance using “indirect” antioxidant effects, the cardioprotective effect Keap1/Nrf2/ ARE system inducers was studied in long-term ischemia/reperfusion in vivo. Material and methods. We used the original synthetic hydrophilic monophenol sodium 3-(3’-tert-butyl-4’-hydroxyphenyl) propyl thiosulfonate (TS-13) and reference drug tert-butylhydroquinone (tBHQ). Male Wistar rats received 100 mg/kg of TS-13 solution (with drinking water) or tBHQ (intraperitoneally) daily for 7 days. Animals of the comparison groups received the corresponding solvents. Local ischemia (45 min, occlusion of the left coronary artery) and reperfusion (120 min) of the heart were simulated in vivo 1 day after last drug administration. The ECG was recorded during ischemia and reperfusion; at the end of reperfusion, the heart was removed, the zone of hypoperfusion and the zone of necrosis were detected. Changes in the expression of the mRNA of Nfe2l2, Nqo1, Hmox1, Gstp1, Rela, and Nfkb2 gene in myocardial tissue were determined by real-time TaqMan PCR. Results and discussion. Pretreatment with TS-13 and tBHQ did not influence the infarct size and the incidence of ventricular arrhythmias. Preliminary administration of tBHQ did not change the genes expression of the studied in myocardial tissue after prolonged I/R. TS-13 administration was accompanied by an increase in the content of the transcripts of the gene that encodes Nrf2 (by 7.64 times) and Nrf2-driven genes Nqo1 (by 6.46 times) and Hmox1 (by 3.63 times); the expression of the Gstp1, Rela, and Nfkb2 genes did not differ from the corresponding values of the control group; compared to animals treated with tBHQ, the expression of the Nfe2l2, Nqo1, Hmox1, Rela, and Nfkb2 genes was 16.23, 4.44, 2.68, 3.17, and 2.64 times higher, respectively. The results obtained cast doubt on the therapeutic importance of the induction of the Keap1/Nrf2/ARE system during prolonged heart ischemia/reperfusion.
Keywords
About the Authors
P. M. KozhinRussian Federation
Peter M. Kozhin, candidate of medical sciences
630117, Novosibirsk, Timakov str., 2
A. S. Sementsov
Russian Federation
Andrey S. Sementsov
634012, Tomsk, Kievskaya str., 111A
S. E. Khrapov
Russian Federation
Semen E. Khrapov
630117, Novosibirsk, Timakov str., 2
M. V. Khrapova
Russian Federation
Marina V. Khrapova, candidate of biological sciences
630117, Novosibirsk, Timakov str., 2
L. P. Romakh
Russian Federation
Lidia P. Romakh
630117, Novosibirsk, Timakov str., 2
N. V. Kandalintseva
Russian Federation
Natalya V. Kandalintseva, doctor of chemical sciences
630126, Novosibirsk, Vilyuiskaya str., 28
E. B. Menshchikova
Russian Federation
Elena B. Menshchikova, doctor of medical sciences
630117, Novosibirsk, Timakov str., 2
References
1. Ланкин В.З., Тихазе А.К., Беленков Ю.Н. Свободнорадикальные процессы при заболеваниях сердечно-сосудистой системы. Кардиология. 2000;40(7):48–61. Lankin V.Z., Tikhaze A.K., Belenkov Yu.N. Free radical processes in diseases of the cardiovascular system. Kardiologiya = Cardiology. 2000;40(7):48–61. [In Russian].
2. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem. 1997;272(34):20963–20966.
3. Shah A.K., Dhalla N.S. Effectiveness of some vitamins in the prevention of cardiovascular disease: a narrative review. Front. Physiol. 2021;12:729255. doi: 10.3389/fphys.2021.729255
4. Goszcz K., Deakin S.J., Duthie G.G., Stewart D., Leslie S.J., Megson I.L. Antioxidants in cardiovascular terapy: Panacea or false hope? Front. Cardiovasc. Med. 2015;2:29. doi: 10.3389/fcvm.2015.00029
5. Krylatov A.V., Maslov L.N., Voronkov N.S., Boshchenko A.A., Popov S.V., Gomez L., Wang H., Jaggi A.S., Downey J.M. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr. Cardiol. Rev. 2018;14(4):290–300. doi: 10.2174/1573403X14666180702152436
6. Ланкин В.З., Тихазе А.К., Беленков Ю.Н. Антиоксиданты в комплексной терапии атеросклероза: pro et contra. Кардиология. 2004;(2):72–81. Lankin V.Z., Tikhaze A.K., Belenkov Yu.N. Antioxidants in complex therapy of atherosclerosis: pro et contra. Kardiologiya = Cardiology. 2004;(2):72–81. [In Russian].
7. Wang W., Kang P.M. Oxidative stress and antioxidant treatments in cardiovascular diseases. Antioxidants (Basel). 2020;9(12):1292. doi: 10.3390/antiox9121292
8. Jayakumar D., Narasimhan K.K.S., Periandavan K. Triad role of hepcidin, ferroportin, and Nrf2 in cardiac iron metabolism: From health to disease. J. Trace Elem. Med. Biol. 2021;69:126882. doi: 10.1016/j. jtemb.2021.126882
9. Shen Y., Liu X., Shi J., Wu X. Involvement of Nrf2 in myocardial ischemia and reperfusion injury. Int. J. Biol. Macromol. 2019;125:496–502. doi: 10.1016/j. ijbiomac.2018.11.190
10. Zenkov N.K., Menshchikova E.B., Tkachev V.O. Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target. Biochemistry (Mosc.). 2013;78(1):19–36. doi: 10.1134/ S0006297913010033
11. Chen Q.M. Nrf2 for cardiac protection: pharmacological options against oxidative stress. Trends Pharmacol. Sci. 2021;42(9):729–744. doi: 10.1016/j. tips.2021.06.005
12. Ucar B.I., Ucar G., Saha S., Buttari B., Profumo E., Saso L. Pharmacological protection against ischemia-reperfusion injury by regulating the Nrf2- Keap1-ARE signaling pathway. Antioxidants (Basel). 2021;10(6):823. doi: 10.3390/antiox10060823
13. Vashi R., Patel B.M. NRF2 in cardiovascular diseases: a ray of hope! J. Cardiovasc. Transl. Res. 2021;14(3):573–586. doi: 10.1007/s12265-020-10083-8
14. Sussan T.E., Jun J., Thimmulappa R., Bedja D., Antero M., Gabrielson K.L., Polotsky V.Y., Biswal S. Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice. PLoS ONE. 2008;3(11):e3791. doi: 10.1371/journal. pone.0003791
15. Oleynik A.S., Kuprina T.S., Pevneva N.Y., Markov A.F., Kandalintseva N.V., Prosenko A.E., Grigoriev I.A. Synthesis and antioxidant properties of sodium S-[3-(hydroxyaryl)propyl] thiosulfates and [3-(hydroxyaryl)propane]-1-sulfonates. Rus. Chem. Bull. 2007;58(6):1135–1143. doi: 10.1007/s11172-007- 0172-3
16. Гайнутдинов П.И., Кожин П.М., Чечушков А.В., Мартинович Г.Г., Хольшин С.В., Кандалинцева Н.В., Зенков Н.К., Меньщикова Е.Б. Обратная зависимость между антиоксидантной активностью синтетических монофенолов структурно взаимосвязанного ряда и их токсичностью в отношении опухолевых клеток. Сиб. науч. мед. ж. 2018;38(1):22–31. doi: 10.15372/SSMJ20180104 Gaynutdinov P.I., Kozhin P.M., Chechushkov A.V., Martinovich G.G., Kholshin S.V., Kandalintseva N.V., Zenkov N.K., Menshchikova E.B. Inverse relationship between the antioxidant activity of structurally related synthetic monophenols and their toxicity in tumor cells. Sibirskij nauchnyj medicinskij zhurnal= Siberian Scientific Medical Journal. 2018;38(1):22–31. [In Russian]. doi: 10.15372/SSMJ20180104
17. Guha S., Roy S. Enhanced expression of SLC4A11 by tert-Butylhydroquinone is mediated by direct binding of Nrf2 to the promoter of SLC4A11. Free Radic. Biol. Med. 2021;167:299–306. doi: 10.1016/j. freeradbiomed.2021.03.006
18. Maslov L.N., Mukhomedzyanov A.V., Tsibulnikov S.Y., Suleiman M.S., Khaliulin I., Oeltgen P.R. Activation of peripheral delta2-opioid receptor prevents reperfusion heart injury. Eur. J. Pharmacol. 2021;907:174302. doi: 10.1016/j.ejphar.2021.174302
19. Neckar J., Ostadal B., Kolar F. Myocardial infarct size-limiting effect of chronic hypoxia persists for five weeks of normoxic recovery. Physiol. Res. 2004;53(6):621–628.
20. Xiao C., Xia M.L., Wang J., Zhou X.R., Lou Y.Y., Tang L.H., Zhang F.J., Yang J.T., Qian L.B. Luteolin attenuates cardiac ischemia/reperfusion injury in diabetic rats by modulating Nrf2 antioxidative function. Oxid. Med. Cell. Longev. 2019;2019:2719252. doi: 10.1155/2019/2719252
21. Chen Y., Zhang X., Yang Y., Zhang L., Cui L., Zhang C., Chen R., Xie Y., He J., He W. Tert-butylhydroquinone enhanced angiogenesis and astrocyte activation by activating nuclear factor-E2-related factor 2/ heme oxygenase-1 after focal cerebral ischemia in mice. Microvasc. Res. 2019;126:103891. doi: 10.1016/j. mvr.2019.103891
22. Guerrero-Beltran C.E., Tapia E., SanchezGonzalez D.J., Martinez-Martinez C.M., Cristobal-Garcia M., Pedraza-Chaverri J. Tert-Butylhydroquinone pretreatment protects kidney from ischemia-reperfusion injury. J. Nephrol. 2012;25(1):84–89. doi: 10.5301/ JN.2011.8345
23. Fei L., Jingyuan X., Fangte L., Huijun D., Liu Y., Ren J., Jinyuan L., Linghui P. Preconditioning with rHMGB1 ameliorates lung ischemia-reperfusion injury by inhibiting alveolar macrophage pyroptosis via the Keap1/Nrf2/HO-1 signaling pathway. J. Transl. Med. 2020;18(1):301. doi: 10.1186/s12967-020- 02467-w
24. Zeng X.P., Li X.J., Zhang Q.Y., Liu Q.W., Li L., Xiong Y., He C.X., Wang Y.F., Ye Q.F. Tert-Butylhydroquinone protects liver against ischemia/reperfusion injury in rats through Nrf2-activating anti-oxidative activity. Transplant. Proc. 2017;49(2):366–372. doi: 10.1016/j.transproceed.2016.12.008
25. Zenkov N.K., Menshchikova E.B., Kandalintseva N.V., Oleynik A.S., Prosenko A.E., Gusachenko O.N., Shklyaeva O.A., Vavilin V.A., Lyakhovich V.V. Antioxidant and antiinflammatory activity of new wa ter-soluble sulfur-containing phenolic compounds. Biochemistry (Mosc.). 2007;72(6):644–651. doi: 10.1134/ S0006297907060077
26. Menshchikova E., Tkachev V., Lemza A., Sharkova T., Kandalintseva N., Vavilin V., Safronova O., Zenkov N. Water-soluble phenol TS-13 combats acute but not chronic inflammation. Inflamm. Res. 2014;63(9):729–740. doi: 10.1007/s00011-014-0746-0
27. Menshchikova E.B., Chechushkov A.V., Kozhin P.M., Kholshin S.V., Kandalintseva N.V., Martinovich G.G., Zenkov N.K. Activation of autophagy and Nrf2 signaling in human breast adenocarcinoma MCF-7 cells by novel monophenolic antioxidants. Cell Tissue Biol. 2019;13(2):85–92. doi: 10.1134/ S1990519X1902007X
28. Menshchikova E.B., Kozhin P.M., Chechushkov A.V., Khrapova M.V., Zenkov N.K. The oral delivery of water-soluble phenol TS-13 ameliorates granuloma formation in an in vivo model of tuberculous granulomatous inflammation. Oxid. Med. Cell. Longev. 2021;2021:6652775. doi: 10.1155/2021/6652775
29. Lacher S.E., Lee J.S., Wang X., Campbell M.R., Bell D.A., Slattery M. Beyond antioxidant genes in the ancient Nrf2 regulatory network. Free Radic. Biol. Med. 2015;88(Pt. B):452–465. doi: 10.1016/j.freeradbiomed.2015.06.044
30. Silva-Palacios A., Ostolga-Chavarria M., Buelna-Chontal M., Garibay C., Hernandez-Resendiz S., Roldan F.J., Flores P.L., Luna-Lopez A., Konigsberg M., Zazueta C. 3-NP-induced Huntington’s-like disease impairs Nrf2 activation without loss of cardiac function in aged rats. Exp. Gerontol. 2017;96:89–98. doi: 10.1016/j.exger.2017.06.009