Preview

Сибирский научный медицинский журнал

Advanced search

INVERSE RELATIONSHIP BETWEEN THE ANTIOXIDANT ACTIVITY OF STRUCTURALLY RELATED SYNTHETIC MONOPHENOLS AND THEIR TOXICITY IN TUMOR CELLS

https://doi.org/10.15372/SSMJ20180104

Abstract

The aim of the study was to study investigate the relationship between the antioxidant activity of new synthetic structurally related water-soluble monophenols and their effect on the tumor cell viability in vitro. Material and methods. Five original hydrophilic sulfur- and selenium-containing monophenols with varying length of the hydrocarbon chain of the para -alkylthiosulfonate substituent, the amount of tert -butyl ortho -substituents and the «S-S» fragment structure are synthesized: sodium 3-(3'- tert -butyl-4'-hydroxyphenyl)ethyl thiosulfonate (TS-12), sodium 3-(3'- tert -butyl-4'-hydroxyphenyl)propyl sulfonate (S-13), sodium 3-(3'- tert -butyl-4'-hydroxyphenyl)propyl seleniumsulfonate (SeS-13), sodium 3-(3'- tert -butyl-4'-hydroxyphenyl)propyl thiosulfonate (TS-13), sodium 3-(3',5'-di- tert -butyl-4’-hydroxyphenyl)propyl thiosulfonate (TS-17). The antioxidant activity of the compounds was determined in a cell-free model test system by the ability to inhibit the luminol-dependent chemiluminescence of free radical-generating azo compound AAPH. Antitumor cytotoxicity was evaluated by their effect on the viability of human histiocytic lymphoma cell line U937 (monocyte/macrophage-like cells) and human breast adenocarcinoma cell line MCF-7 in the MTT test. Results and discussion. All tested phenolic compounds exerted antioxidant activity in the cell-free model system (inhibition of azo initiator radical AAPH) and cytotoxicity against U937 and MCF-7 cells, the effect depended on the dose and structure of the molecule. There was a direct relationship between the structure of monophenols and their ability to inhibit the viability of tumor cells of different lines, regardless of the origin of the latter, myeloid (U937) or epithelial (MCF-7), and growth type (respectively anchorage-independent and attached), as well as the concentration range of compounds (respectively from 100 to 500 μM and from 2 to 150 μM). At the same time, the relationship between the antioxidant activity of monophenols and their cytotoxicity was inverse (when SeS-13 was excluded from analysis), which may be related both to the ability of the tumor to self-defense against reactivate oxygen metabolites and to the indirect pro-oxidant effect of phenolic compounds.

About the Authors

P. I. Gaynutdinov
Research Institute for Experimental and Clinical and Medicine
Russian Federation


P. M. Kozhin
Research Institute for Experimental and Clinical and Medicine
Russian Federation


A. V. Chechushkov
Research Institute for Experimental and Clinical and Medicine
Russian Federation


G. G. Martinovich
Belarusian State University
Russian Federation


S. V. Kholshin
Novosibirsk State Pedagogical University
Russian Federation


N. V. Kandalintseva
Novosibirsk State Pedagogical University
Russian Federation


N. K. Zenkov
Research Institute for Experimental and Clinical and Medicine
Russian Federation


E. B. Menshchikova
Research Institute for Experimental and Clinical and Medicine
Russian Federation


References

1. Зиновьева В.Н., Спасов А.А. Механизмы антиканцерогенных эффектов растительных полифенолов I. Блокирование инициации канцерогенеза // Биомед. химия. 2012. 58. (2). 160-175.

2. Меньщикова Е.Б., Ланкин В.З., Кандалинцева Н.В. Фенольные антиоксиданты в биологии и медицине. Saarbrucken: LAP LAMBERT Acad. Publishing, 2012. 496 с.

3. Олейник А.С., Куприна Т.С., Певнева Н.Ю., Марков А.Ф., Кандалинцева Н.В., Просенко А.Е., Григорьев И.А. Синтез и антиоксидантные свойства S-[3-(гидроксиарил)пропил]тиосульфатов и [3-(гидроксиарил)пропан]-1-сульфонатов натрия // Изв. АН. Сер. хим. 2007. (6). 1094-1101.

4. Патент СССР 877918. Способ получения 4-оксиалкил-2,6-ди-трет-бутилфенолов / А.П. Крысин, И.И. Пустовских, Л.А. Борисенко, В.А. Коптюг, Н.Н. Городецкая; Опубл. 15.06.1979.

5. Шкурупий В.А., Куликов В.Ю., Меньщикова Е.Б., Зенков Н.К., Жиляков И.В. Влияние бальнеологического фактора курорта Белокуриха на антиоксидантную активность сыворотки крови и на ее изменение в динамике хронического неспецифического гранулематозного воспаления // Бюл. СО РАМН. 2006. 26. (2). 159-165.

6. Assi M. The differential role of reactive oxygen species in early and late stages of cancer // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017. 313. (6). R646-R653.

7. Capurso C., Vendemiale G. The Mediterranean diet reduces the risk and mortality of the prostate cancer: A narrative review // Front Nutr. 2017. 4. 38.

8. Chikara S., Nagaprashantha L.D., Singhal J., Horne D., Awasthi S., Singhal S.S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment // Cancer Lett. 2018. 413. 122-134.

9. Clarke M.W., Burnett J.R., Croft K.D. Vitamin E in human health and disease // Crit. Rev. Clin. Lab. Sci. 2008. 45. (5). 417-450.

10. Davies J.M.S., Cillard J., Friguet B., Cadenas E., Cadet J., Cayce R., Fishmann A., Liao D., Bulteau A.L., Derbre F., Rebillard A., Burstein S., Hirsch E., Kloner R.A., Jakowec M., Petzinger G., Sauce D., Sennlaub F., Limon I., Ursini F., Maiorino M., Economides C., Pike C.J., Cohen P., Salvayre A.N., Halliday M.R., Lundquist A.J., Jakowec N.A., Mechta-Grigoriou F., Mericskay M., Mariani J., Li Z., Huang D., Grant E., Forman H.J., Finch C.E., Sun P.Y., Pomatto L.C.D., Agbulut O., Warburton D., Neri C., Rouis M., Cillard P., Capeau J., Rosenbaum J., Davies K.J.A. The Oxygen Paradox, the French Paradox, and age-related diseases // Geroscience. 2017.

11. Dong Y., Liu Y., Shu Y., Chen X., Hu J., Zheng R., Ma D., Yang C., Guan X. Link between risk of colorectal cancer and serum vitamin E levels: A meta-analysis of case-control studies // Medicine (Baltimore). 2017. 96. (27). e7470.

12. Khan H.Y., Zubair H., Ullah M.F., Ahmad A., Hadi S.M. A prooxidant mechanism for the anticancer and chemopreventive properties of plant polyphenols // Curr. Drug Targets. 2012. 13. (14). 1738-1749.

13. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays // J. Immunol. Methods. 1983. 65. (1-2). 55-63.

14. Oliver C.J., Myers S.P. Validity of a Cochrane Systematic Review and meta-analysis for determining the safety of vitamin E // BMC Complement. Altern. Med. 2017. 17. (1). 408.

15. Omenn G.S. Chemoprevention of lung cancers: lessons from CARET, the beta-carotene and retinol efficacy trial, and prospects for the future // Eur. J. Cancer Prev. 2007. 16. (3). 184-191.

16. Tafazoli A. Coenzyme Q10 in breast cancer care // Future Oncol. 2017. 13. (11). 1035-1041.

17. Trendowski M., Wong V., Yu G., Fondy T.P. Enlargement and multinucleation of U937 leukemia and MCF7 breast carcinoma cells by antineoplastic agents to enhance sensitivity to low frequency ultrasound and to DNA-directed anticancer agents // Anticancer Res. 2015. 35. (1). 65-76.

18. Waskewich C., Blumenthal R.D., Li H., Stein R., Goldenberg D.M., Burton J. Celecoxib exhibits the greatest potency amongst cyclooxygenase (COX) inhibitors for growth inhibition of COX-2-negative hematopoietic and epithelial cell lines // Cancer Res. 2002. 62. (7). 2029-2033.

19. Zhu Y.J., Bo Y.C., Liu X.X., Qiu C.G. Association of dietary vitamin E intake with risk of lung cancer: a dose-response meta-analysis // Asia Pac. J. Clin. Nutr. 2017. 26. (2). 271-277.

20. Zuo X.L., Chen J.M., Zhou X., Li X.Z., Mei G.Y. Levels of selenium, zinc, copper, and antioxidant enzyme activity in patients with leukemia // Biol. Trace Elem. Res. 2006. 114. (1-3). 41-53.


Review

Views: 1067


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)