Preview

Сибирский научный медицинский журнал

Advanced search

Intensity of CD36 expression by monocyte subpopulations and blood lipid spectrum parameters in patients without established atherosclerotic cardiovascular disease

https://doi.org/10.18699/SSMJ20210408

Abstract

Introduction. At the current stage of the study of atherosclerosis, it has been established that chronic activation of innate immunity, causing persistent low-intensity sterile inflammation, plays a crucial role at all stages of atherogenesis. Laboratory evaluation of signaling pathways associated with molecular patterns (DAMPs) in atherosclerosis and related to cardiovascular diseases (CVD) may contribute to the discovery of new diagnostic and prognostic markers. Objective: to study the relationship between lipid metabolism parameters and CD36 exposure to circulating monocytes in patientwithout established CVD. Material and methods. The study included 42 patients aged 40–64 years without established atherosclerotic CVD, 19 (45.2 %) men and 23 (54.7 %) women. Dyslipidemia was detected in 95.2 % of patients. The blood serum concentrations of total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, glucose, glycated hemoglobin, high-sensitivity C-reactive protein (hs-CRP), creatinine were determined with subsequent calculation of glomerular filtration rate. Phenotyping of circulating monocyte subpopulations was performed by flow cytometry on a Navios 6/2 device (Beckman Coulter, USA). Results and discussion. According to the results of correlation analysis, non-HDL cholesterol levels were inversely correlated with absolute (r = –0.394; p = 0.013) and relative (r = –0.432; p = 0.006) content of CD14+ CD16++CD36+ TLR2+ monocytes. LDL cholesterol levels were also inversely correlated with the relative content of CD14+ CD16+ CD36+ TLR2+ monocytes (r = –0.417; p = 0.018). According to correlation analysis, the level of non-HDL cholesterol inversely correlated with the intensity of CD36 expression on classical (r = –0.650; p < 0.0001), intermediate (r = –0.323; p = 0.045) and non classical (r = –0.480; p = 0.002) monocytes. Also, CD36 expression intensity on classical (r = –0.449; p = 0.004) and non-classical (r = –0.382; p = 0.016) monocytes was inversely correlated with remnant cholesterol levels. In addition, increased non-HLA cholesterol levels were associated with decreased TLR2 expression on CD14+ CD16++ monocytes (r = –0.381; p = 0.018). It should be noted that a decrease in CD36 expression on intermediate monocytes was also associated with an increase in hs-CRP (r = –0.657; p = 0.003). Conclusion. In patients without established atherosclerotic CVD, an increase in cholesterol content of atherogenic lipoprotein fractions was associated with a decrease in the number of CD14+ CD16++ and CD14+CD16+ monocytes co-expressing CD36 and TLR2 as well as with a decrease in CD36 expression on classical, intermediate and non-classical monocytes.

About the Authors

I. I. Dolgushin
South-Ural State Medical University of Minzdrav of Russia
Russian Federation

Ilya I. Dolgushin, doctor of medical sciences, professor, academician of the RAS

454092, Chelyabinsk, Vorovskogo str., 64



V. V. Genkel
South-Ural State Medical University of Minzdrav of Russia
Russian Federation

Vadim V. Genkel, candidate of medical sciences

454092, Chelyabinsk, Vorovskogo str., 64



I. I. Shaposhnik
South-Ural State Medical University of Minzdrav of Russia
Russian Federation

Igor I. Shaposhnik, doctor of medical sciences, professor

454092, Chelyabinsk, Vorovskogo str., 64



I. L. Baturina
South-Ural State Medical University of Minzdrav of Russia
Russian Federation

Irina L. Baturina, candidate of medical sciences

454092, Chelyabinsk, Vorovskogo str., 64



A. S. Kuznetsova
South-Ural State Medical University of Minzdrav of Russia
Russian Federation

Alla S. Kuznetsova, candidate of medical sciences

454092, Chelyabinsk, Vorovskogo str., 64



A. Yu. Savochkina
South-Ural State Medical University of Minzdrav of Russia
Russian Federation

Albina Yu. Savochkina, doctor of medical sciences

454092, Chelyabinsk, Vorovskogo str., 64



References

1. Liberale L., Montecucco F., Tardif J.C., Libby P., Camici G.G. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur. Heart J. 2020; 41 (31): 2974-2982. doi: 10.1093/eurheartj/ehz961

2. Roh J.S., Sohn D.H. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 2018; 18 (4): e27. doi: 10.4110/in.2018.18.e27

3. Gusev E.Yu., Zotova N.V., Zhuravleva Yu.A., Chereshnev V.A. Physiological and pathogenetic role of litter receptors in humans. Meditsinskaya immunologiya = Medical Immunology. 2020; 22 (1): 7-48. [In Russian]. doi: 10.15789/1563-0625-PAP-1893

4. Zhao L., Varghese Z., Moorhead J.F., Chen Y., Ruan X.Z. CD36 and lipid metabolism in the evolution of atherosclerosis. Br. Med. Bull. 2018; 126 (1): 101- 112. doi: 10.1093/bmb/ldy006

5. Sinitskij M.Yu., Velikanova E.A., Shishkova D.K., Ponasenko A.V., Kutikhin A.G. Еxpression of scavenger receptor and cell adhesion molecule genes in human endothelial cells exposed to mineral-organic nanoparticles. Ateroskleroz = Atherosclerosis. 2018; 14 (4): 5-13. [In Russian]. doi: 10.15372/ATER20180401

6. Zimmer S., Grebe A., Latz E. Danger signaling in atherosclerosis. Circ. Res. 2015; 116 (2): 323-340. doi: 10.1161/CIRCRESAHA.116.301135

7. Frantz S., Monaco C., Arslan F. Danger signals in cardiovascular disease. Mediators Inflamm. 2014; 2014: 395278. doi: 10.1155/2014/395278

8. Gankovskaya L.V., Stakhovskaya L.V., Grechenko V.V., Koltscova E.A., Uvarova O.S., Demina M.D., Gromova T.V., Svitich O.A. TLR2 and TLR4 hyperexpression in patients with ischemic stroke in the acute period of the disease. Meditsinskaya immunologiya = Medical Immunology. 2020; 22 (4): 665-674. [In Russian]. doi: 10.15789/1563-0625-HOT-197

9. Yazgan B., Sozen E., Karademir B., Ustunsoy S., Ince U., Zarkovic N., Ozer N.K. CD36 expression in peripheral blood mononuclear cells reflects the onset of atherosclerosis. Biofactors. 2018; 44 (6): 588-596. doi: 10.1002/biof.1372

10. Park Y.M. CD36, a scavenger receptor implicated in atherosclerosis. Exp. Mol. Med. 2014; 46 (6): e99. doi: 10.1038/emm.2014.38

11. Gómez-Bañuelos E., Martín-Márquez B.T., Martínez- García E.A., Figueroa-Sanchez M., Nuñez-Atahualpa L., Rocha-Muñoz A.D., Sánchez-Hernández P.E., Navarro-Hernandez R.E., Madrigal-Ruiz P.M., Saldaña-Millan A.A., Duran-Barragan S., Gonzalez- Lopez L., Gamez-Nava J.I., Vázquez-Del Mercado M. Low levels of CD36 in peripheral blood monocytes in subclinical atherosclerosis in rheumatoid arthritis: a cross-sectional study in a Mexican population. Biomed. Res. Int. 2014; 2014: 736786. doi: 10.1155/2014/736786

12. Chandran J., Wadhwa N., Madhu S.V., Kumar R., Sharma S. Monocyte CD36 expression associates with atherosclerotic burden in diabetes mellitus. Diabetes Res. Clin. Pract. 2020; 163: 108156. doi: 10.1016/j.diabres.2020.108156

13. Piechota M., Banaszewska A., Dudziak J., Slomczynski M., Plewa R. Highly upregulated expression of CD36 and MSR1 in circulating monocytes of patients with acute coronary syndromes. Protein J. 2012; 31 (6): 511-518. doi: 10.1007/s10930-012-9431-8

14. Yassin L.M., Londoño J., Montoya G., de Sanctis J.B., Rojas M., Ramírez .LA., García L.F., Vásquez G. Atherosclerosis development in SLE patients is not determined by monocytes ability to bind/endocytose Ox-LDL. Autoimmunity. 2011; 44 (3): 201-210. doi: 10.3109/08916934.2010.530626

15. Sandesara P.B., Virani S.S., Fazio S., Shapiro M.D. The forgotten lipids: triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr. Rev. 2019; 40 (2): 537-557. doi: 10.1210/er.2018-00184

16. Jackson W.D., Weinrich T.W., Woollard K.J. Very-low and low-density lipoproteins induce neutral lipid accumulation and impair migration in monocyte subsets. Sci. Rep. 2016; 6: 20038. doi: 10.1038/srep20038

17. Pillon N.J., Chan K.L., Zhang S., Mejdani M., Jacobson M.R., Ducos A., Bilan P.J., Niu W., Klip A. Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release. Am. J.Physiol. Endocrinol. Metab. 2016; 311 (5): 825-835. doi: 10.1152/ajpendo.00296.2016

18. Boyer J.F., Balard P., Authier H., Faucon B., Bernad J., Mazières B., Davignon J.L., Cantagrel A., Pipy B., Constantin A. Tumor necrosis factor alpha and adalimumab differentially regulate CD36 expression in human monocytes. Arthritis Res. Ther. 2007; 9 (2): R22. doi: 10.1186/ar2133

19. Zamora C., Cantó E., Nieto J.C., Ortiz M.A., Juarez C., Vidal S. Functional consequences of CD36 downregulation by TLR signals. Cytokine. 2012; 60 (1): 257-265. doi: 10.1016/j.cyto.2012.06.020


Review

Views: 631


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)