Preview

Сибирский научный медицинский журнал

Advanced search

Millimeter waves and 5G standard: addition to the review

https://doi.org/10.18699/SSMJ20210403

Abstract

The fifth generation (5G) telecommunication systems are about to be implemented worldwide. It is argued here that millimeter waves used in 5G cannot be more harmful per unit of absorbed energy than infrared radiation. In the literature, there is neither convincing evidence nor theoretical considerations in favor of carcinogenic or damaging (up to the level of thermal damage) effects of millimeter waves. Excessively strict safety regulations are unfavorable for the economy and everyday life. Epidemiological data are important; but more attention should be given to potential bias and confounding factors. Large-scale animal experiments with the registration of average life duration would be a reliable way to determine the net harm. The doses and exposure duration in animals must be comparable to those in related human populations to make results extrapolable to humans.

About the Author

S. V. Jargin
Peoples’ Friendship University of Russia
Russian Federation

Sergei V. Jargin, candidate of medical sciences

117198, Moscow, Miklukho-Maklay str., 6



References

1. Jargin S.V. On the biological effects of radiofrequency electromagnetic fields. Sibirskiy nauchnyy meditsinskiy zhurnal = Siberian Scientific Medical Journal. 2019; 39 (5): 52–61. [In Russian]. doi: 10.15372/SSMJ20190506

2. Jargin S.V. Radiofrequency radiation: carcinogenic and other potential risks. J. Radiat. Oncol. 2020; 9: 81–91. doi: 10.1007/s13566-020-00425-z

3. Grigoriev Yu.G. 5g standard – technological leap ahead for cellular communication. Will there be a problem with the health of the population? (diving in problem). Radiatsionnaya biologiya. Radioekologiya = Radiation Biology. Radioecology. 2020; 60 (6): 627–634. [In Russian]. doi: 10.31857/S0869803120060181

4. Wood A., Mate R., Karipidis K. Meta-analysis of in vitro and in vivo studies of the biological effects of low-level millimetre waves. J. Expo. Sci. Environ. Epidemiol. 2021; 31 (4): 606–613. doi: 10.1038/s41370-021-00307-7

5. Karipidis K., Mate R., Urban D., Tinker R., Wood A. 5G mobile networks and health-a state-of-thescience review of the research into low-level RF fields above 6 GHz. J. Expo. Sci. Environ. Epidemiol. 2021; 31 (4): 585-605. doi: 10.1038/s41370-021-00297-6

6. Panchenko P.A. Photochemical reactions. Moscow, 2017. 132 p. [In Russian].

7. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields. IARC Monogr. Eval. Carcinog. Risks Hum. 2013; 102 (Pt 2): 1–460.

8. Scientific Committee on Emerging Newly Identified Health Risks. Opinion on potential health effects of exposure to electromagnetic fields. Bioelectromagnetics. 2015; 36 (6): 480–484. doi: 10.1002/bem.21930

9. Swerdlow A.J., Feychting M., Green A.C., Leeka Kheifets L.K., Savitz D.A. International commission for non-ionizing radiation protection standing committee on epidemiology. Mobile phones, brain tumours, and the interphone study: Where are we now? Environ. Health Perspect. 2011; 119 (11): 1534–1538. doi: 10.1289/ehp.1103693

10. Jargin S.V. Hormesis and radiation safety norms: Comments for an update. Hum. Exp. Toxicol. 2018; 37 (11): 1233–1243. doi: 10.1177/0960327118765332

11. Vrijheid M., Deltour I., Krewski D., Sanchez M., Cardis E. The effects of recall errors and of selection bias in epidemiologic studies of mobile phone use and cancer risk. J. Expo. Sci. Environ. Epidemiol. 2006; 16 (4): 371–384. doi: 10.1038/sj.jes.7500509

12. Inskip P.D., Hoover R.N., Devesa S.S. Brain cancer incidence trends in relation to cellular telephone use in the United States. Neuro-Oncol. 2010; 12 (11): 1147–1151. doi: 10.1093/neuonc/noq077

13. Little M.P., Rajaraman P., Curtis R.E., Devesa S.S., Inskip P.D., Check D.P., Linet M.S. Mobile phone use and glioma risk: Comparison of epidemiological study results with incidence trends in the United States. BMJ. 2012; 344: e1147. doi: 10.1136/bmj.e1147

14. Teksheva L.M., Barsukova N.K., Chumicheva O.A., Khatit Z.Kh. Hygienic aspects of cellular communication in school age. Gigiena i sanitariya = Hygiene and Sanitation. 2014; (2): 60–65. [In Russian].

15. Schüz J., Jacobsen R., Olsen J.H., Boice J.D. Jr., McLaughlin J.K., Johansen C. Cellular telephone use and cancer risk: Update of a nationwide Danish cohort. J. Natl. Cancer Inst. 2006; 98 (23): 1707–1713. doi: 10.1093/jnci/djj464

16. Nikolaevskaya V.P. The use of microwave therapy in patients with chronic tonsillitis. Vestnik otorinolaringologii = Bulletin of Otorhinolaryngology. 1966; 28 (6): 31–34. [In Russian].

17. Povazhnaia E.L., Mambetalieva A.S. Extremely high frequency therapy for the prevention of acute respiratory diseases in children with chronic ENT and allergic diseases. Voprosy kurortologii, fizioterapii i lechebnoy fizicheskoy kul’tury = Problems of Balneology, Physiotherapy, and Exercise Therapy. 2010; (5): 17–21.

18. Betzalel N., Ben Ishai P., Feldman Y. The human skin as a sub-THz receiver - Does 5G pose a danger to it or not? Environ. Res. 2018; 163: 208–216. doi: 10.1016/j.envres.2018.01.032

19. Baker L.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature (Austin). 2019; 6 (3): 211–259. doi: 10.1080/23328940.2019.1632145

20. Neufeld E., Kuster N. Systematic derivation of safety limits for time-varying 5G radiofrequency exposure based on analytical models and thermal dose. Health Phys. 2018; 115 (6): 705–711. doi: 10.1097/HP.0000000000000930

21. Elder J.A. Ocular effects of radiofrequency energy. Bioelectromagnetics. 2003; (Suppl. 6): S148– S161. doi: 10.1002/bem.10117

22. Kudryashov Yu.B., Perov Yu.F., Rubin A.B. Radiation biophysics. Moscow: Fizmatlit, 2008. 184 p. [In Russian].

23. Kramar P.O., Emery A.F., Guy A.W., Lin J.C. The ocular effects of microwaves on hypothermic rabbits: a study of microwave cataractogenic mechanisms. Ann. N.Y. Acad. Sci. 1975; 247: 155–165. doi: 10.1111/j.1749-6632.1975.tb35992.x

24. Yu Y., Yao K. Non-thermal cellular effects of low-power microwave radiation on the lens and lens epithelial cells. J. Int. Med. Res. 2010; 38 (3): 729–736. doi: 10.1177/147323001003800301

25. Rezunkova O.P. Ecological (biotropic) features of the millimeter diapason. Saint-Petersburg, 2015. 172 p. [In Russian].

26. National Toxicology Program. Toxicology and carcinogenesis studies in Sprague Dawley (Hsd: Sprague Dawley SD) rats exposed to whole-body radio frequency radiation at a frequency (900 MHz) and modulations (GSM and CDMA) used by cell phones. Natl. Toxicol. Program Tech. Rep. Ser. 2018; (595): NTP-TR-595. doi: 10.22427/NTP-TR-595


Review

Views: 334


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)