Millimeter waves and 5G standard: addition to the review
https://doi.org/10.18699/SSMJ20210403
Abstract
The fifth generation (5G) telecommunication systems are about to be implemented worldwide. It is argued here that millimeter waves used in 5G cannot be more harmful per unit of absorbed energy than infrared radiation. In the literature, there is neither convincing evidence nor theoretical considerations in favor of carcinogenic or damaging (up to the level of thermal damage) effects of millimeter waves. Excessively strict safety regulations are unfavorable for the economy and everyday life. Epidemiological data are important; but more attention should be given to potential bias and confounding factors. Large-scale animal experiments with the registration of average life duration would be a reliable way to determine the net harm. The doses and exposure duration in animals must be comparable to those in related human populations to make results extrapolable to humans.
About the Author
S. V. JarginRussian Federation
Sergei V. Jargin, candidate of medical sciences
117198, Moscow, Miklukho-Maklay str., 6
References
1. Jargin S.V. On the biological effects of radiofrequency electromagnetic fields. Sibirskiy nauchnyy meditsinskiy zhurnal = Siberian Scientific Medical Journal. 2019; 39 (5): 52–61. [In Russian]. doi: 10.15372/SSMJ20190506
2. Jargin S.V. Radiofrequency radiation: carcinogenic and other potential risks. J. Radiat. Oncol. 2020; 9: 81–91. doi: 10.1007/s13566-020-00425-z
3. Grigoriev Yu.G. 5g standard – technological leap ahead for cellular communication. Will there be a problem with the health of the population? (diving in problem). Radiatsionnaya biologiya. Radioekologiya = Radiation Biology. Radioecology. 2020; 60 (6): 627–634. [In Russian]. doi: 10.31857/S0869803120060181
4. Wood A., Mate R., Karipidis K. Meta-analysis of in vitro and in vivo studies of the biological effects of low-level millimetre waves. J. Expo. Sci. Environ. Epidemiol. 2021; 31 (4): 606–613. doi: 10.1038/s41370-021-00307-7
5. Karipidis K., Mate R., Urban D., Tinker R., Wood A. 5G mobile networks and health-a state-of-thescience review of the research into low-level RF fields above 6 GHz. J. Expo. Sci. Environ. Epidemiol. 2021; 31 (4): 585-605. doi: 10.1038/s41370-021-00297-6
6. Panchenko P.A. Photochemical reactions. Moscow, 2017. 132 p. [In Russian].
7. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields. IARC Monogr. Eval. Carcinog. Risks Hum. 2013; 102 (Pt 2): 1–460.
8. Scientific Committee on Emerging Newly Identified Health Risks. Opinion on potential health effects of exposure to electromagnetic fields. Bioelectromagnetics. 2015; 36 (6): 480–484. doi: 10.1002/bem.21930
9. Swerdlow A.J., Feychting M., Green A.C., Leeka Kheifets L.K., Savitz D.A. International commission for non-ionizing radiation protection standing committee on epidemiology. Mobile phones, brain tumours, and the interphone study: Where are we now? Environ. Health Perspect. 2011; 119 (11): 1534–1538. doi: 10.1289/ehp.1103693
10. Jargin S.V. Hormesis and radiation safety norms: Comments for an update. Hum. Exp. Toxicol. 2018; 37 (11): 1233–1243. doi: 10.1177/0960327118765332
11. Vrijheid M., Deltour I., Krewski D., Sanchez M., Cardis E. The effects of recall errors and of selection bias in epidemiologic studies of mobile phone use and cancer risk. J. Expo. Sci. Environ. Epidemiol. 2006; 16 (4): 371–384. doi: 10.1038/sj.jes.7500509
12. Inskip P.D., Hoover R.N., Devesa S.S. Brain cancer incidence trends in relation to cellular telephone use in the United States. Neuro-Oncol. 2010; 12 (11): 1147–1151. doi: 10.1093/neuonc/noq077
13. Little M.P., Rajaraman P., Curtis R.E., Devesa S.S., Inskip P.D., Check D.P., Linet M.S. Mobile phone use and glioma risk: Comparison of epidemiological study results with incidence trends in the United States. BMJ. 2012; 344: e1147. doi: 10.1136/bmj.e1147
14. Teksheva L.M., Barsukova N.K., Chumicheva O.A., Khatit Z.Kh. Hygienic aspects of cellular communication in school age. Gigiena i sanitariya = Hygiene and Sanitation. 2014; (2): 60–65. [In Russian].
15. Schüz J., Jacobsen R., Olsen J.H., Boice J.D. Jr., McLaughlin J.K., Johansen C. Cellular telephone use and cancer risk: Update of a nationwide Danish cohort. J. Natl. Cancer Inst. 2006; 98 (23): 1707–1713. doi: 10.1093/jnci/djj464
16. Nikolaevskaya V.P. The use of microwave therapy in patients with chronic tonsillitis. Vestnik otorinolaringologii = Bulletin of Otorhinolaryngology. 1966; 28 (6): 31–34. [In Russian].
17. Povazhnaia E.L., Mambetalieva A.S. Extremely high frequency therapy for the prevention of acute respiratory diseases in children with chronic ENT and allergic diseases. Voprosy kurortologii, fizioterapii i lechebnoy fizicheskoy kul’tury = Problems of Balneology, Physiotherapy, and Exercise Therapy. 2010; (5): 17–21.
18. Betzalel N., Ben Ishai P., Feldman Y. The human skin as a sub-THz receiver - Does 5G pose a danger to it or not? Environ. Res. 2018; 163: 208–216. doi: 10.1016/j.envres.2018.01.032
19. Baker L.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature (Austin). 2019; 6 (3): 211–259. doi: 10.1080/23328940.2019.1632145
20. Neufeld E., Kuster N. Systematic derivation of safety limits for time-varying 5G radiofrequency exposure based on analytical models and thermal dose. Health Phys. 2018; 115 (6): 705–711. doi: 10.1097/HP.0000000000000930
21. Elder J.A. Ocular effects of radiofrequency energy. Bioelectromagnetics. 2003; (Suppl. 6): S148– S161. doi: 10.1002/bem.10117
22. Kudryashov Yu.B., Perov Yu.F., Rubin A.B. Radiation biophysics. Moscow: Fizmatlit, 2008. 184 p. [In Russian].
23. Kramar P.O., Emery A.F., Guy A.W., Lin J.C. The ocular effects of microwaves on hypothermic rabbits: a study of microwave cataractogenic mechanisms. Ann. N.Y. Acad. Sci. 1975; 247: 155–165. doi: 10.1111/j.1749-6632.1975.tb35992.x
24. Yu Y., Yao K. Non-thermal cellular effects of low-power microwave radiation on the lens and lens epithelial cells. J. Int. Med. Res. 2010; 38 (3): 729–736. doi: 10.1177/147323001003800301
25. Rezunkova O.P. Ecological (biotropic) features of the millimeter diapason. Saint-Petersburg, 2015. 172 p. [In Russian].
26. National Toxicology Program. Toxicology and carcinogenesis studies in Sprague Dawley (Hsd: Sprague Dawley SD) rats exposed to whole-body radio frequency radiation at a frequency (900 MHz) and modulations (GSM and CDMA) used by cell phones. Natl. Toxicol. Program Tech. Rep. Ser. 2018; (595): NTP-TR-595. doi: 10.22427/NTP-TR-595