Preview

Сибирский научный медицинский журнал

Advanced search

Current views on the role of fatty acids in the diagnosis of cardiovascular diseases (review)

https://doi.org/10.18699/SSMJ20210401

Abstract

An additional informative tool in the diagnosis of cardiovascular diseases in the early stages can be the analysis of changes in the fatty acid profile, which can be considered as a marker of various pathological conditions. The study of the effects of fatty acids and the mechanisms of changes in the fatty acid profile in connection with cardiovascular diseases remains relevant. We have analyzed modern data from foreign and domestic literature on issues related to the importance of fatty acids as possible markers in the diagnosis of cardiovascular diseases. Basic information about the structure of fatty acids, their functions in the human body, the relationship between the level of free fatty acids and indicators of the development of pathological processes of the cardiovascular system is presented. The factors influencing the dynamics of fatty acid concentrations both in normal conditions and during the development of pathological processes are reflected. The processes of biochemical modification of the fatty acid composition of the lipid matrix of the cell membrane are considered. The expediency of using fatty acids, together with some protein markers in the diagnosis of diseases of the cardiovascular system, has been shown. The collection and analysis of the accumulated information on the role of fatty acids helps to optimize the use of laboratory markers to determine the stages of pathogenesis of circulatory organ damage, to develop a system for evaluating the effectiveness of therapy for cardiovascular diseases, and to create a set of laboratory and instrumental tests for monitoring the condition of patients.

About the Authors

O. V. Astafyeva
Astrakhan State Medical University of Minzdrav of Russia
Russian Federation

Oxana V. Astafyeva, candidate of biological science

414000, Astrakhan, Bakinskaya str., 121



Z. V. Zharkova
Astrakhan State Medical University of Minzdrav of Russia
Russian Federation

Zinaida V. Zharkova

414000, Astrakhan, Bakinskaya str., 121



A. L. Yasenyavskaya
Astrakhan State Medical University of Minzdrav of Russia
Russian Federation

Anna L. Yasenyavskaya, candidate of medical sciences

414000, Astrakhan, Bakinskaya str., 121



O. A. Bashkina
Astrakhan State Medical University of Minzdrav of Russia
Russian Federation

Olga А. Bashkina, doctor of medical sciences, professor

414000, Astrakhan, Bakinskaya str., 121



M. A. Samotrueva
Astrakhan State Medical University of Minzdrav of Russia
Russian Federation

Marina A. Samotrueva, doctor of medical sciences, professor

414000, Astrakhan, Bakinskaya str., 121



References

1. Frostegård J. Immunity, atherosclerosis and cardiovascular disease. BMC Medicine. 2013; 11: 117. doi: 10.1186/1741-7015-11-117

2. Orlova T.I., Ukolov A.I., Savel’eva E.I., Radilov A.S. GC-MS quantification of free and esterified fatty acids in blood plasma. Analitika i kontrol’ = Analytics and Control. 2015; 19 (2): 183–188. [In Russian]. doi: 10.15826/analitika.2015.19.2.002

3. Kantur T.A., Karaman Ju.K., Zhukova N.V. Optimization of rehabilitation treatment of arterial hypertension. Byulleten’ Sibirskogo otdeleniya Rossiyskoy akademii meditsinskikh nauk = Bulletin of Siberian Branch of Russian Academy of Medical Sciences. 2012; 32 (4): 52–58. [In Russian].

4. Lionetti V., Stanley W.C., Recchia F.A. Modulating fatty acid oxidation in heart failure. Cardiovasc. Res. 2011; 90 (2): 202–209. doi: 10.1093/cvr/cvr038

5. Martínez M.S., García A., Luzardo E., Chávez-Castillo M., Olivar L.C., Salazar J., Velasco M., Quintero J.J.R., Bermúdez V. Energetic metabolism in cardiomyocytes: molecular basis of heart ischemia and arrhythmogenesis. Vessel Plus. 2017; 1: 130–141. doi: 10.20517/2574-1209.2017.34

6. Tihomirova Yu.R., Kontorshhikova K.N. Free fatty acid and fatty acid binding protein levels as a predictor of coronary events. Meditsinskiy al’manah = Medical Almanac. 2016; 42 (2): 29–31. [In Russian].

7. Kaur N., Chugh V., Gupta A.K. Essential fatty acids as functional components of foods- a review. J. Food Sci. Technolnology. 2012; 51 (10): 2289–2303. doi: 10.1007/s13197-012-0677-0

8. Titov V.N. The clinical biochemistry of hypo-lipedemic therapy and mechanisms of action of statins: the fatty acids, statins and diabetes mellitus. Klinicheskaya laboratornaya diagnostika = Russian Clinical Laboratory Diagnostics. 2014; 59 (2): 4–15. [In Russian].

9. Gonçalves-de-Albuquerque C.F., Barnese M.R.C., Soares M.A., Faria M.V.C., Silva A.R., Neto H.C.C.F., Younes-Ibrahim M. Serum albumin saturation test based on non-esterified fatty acids imbalance for clinical employment. Clin. Chim. Acta. 2019; 495: 422–428. doi: 10.1016/j.cca.2019.05.003

10. Isaeva A.P., Gapparova K.M., Chekhonina Yu.G., Lapik I.A. Characteristics of free fatty acid metabolism in pathogenesis of obesity: current view. Voprosy pitaniya = Problems of Nutrition. 2018; 87 (1): 18–27. [In Russian]. doi: 10.24411/0042-8833-2018-10002

11. Titov V.N. Medium-chain fatty acids: food content, physiology, metabolic characteristics and clinical use. Voprosy pitaniya = Nutrition Issues. 2012; 81 (6): 27– 36. [In Russian].

12. Drapkina O.M., Korneeva O.N. Continuum of non-alcoholic fatty liver disease: from liver steatosis to cardiovascular risk. Ratsional’naya farmakoterapiya v kardiologii = Rational Pharmacotherapy in Cardiology. 2016; 12 (4): 424–429. [In Russian]. doi: 10.20996/1819-6446-2016-12-4-424-429

13. Vakhlova I.V., Berdysheva O.I., Kaminskaja L.A. Modern views on the role of free fatty acids in lipid and carbohydrate metabolism disorders in obese children (literature review). Vestnik Ural’skoy meditsinskoy akademicheskoy nauki = Journal of Ural Medical Academic Science. 2011; 36 (3): 104–107. [In Russian].

14. Ljudinina A.Ju., Potolicyna N.N., Eseva T.V., Solonin Ju.G., Osadchuk L.V., Vas’kovskij V.E., Bojko E.R. The influence of lifestyle and dietary patterns on the blood plasma fatty acid profile of natives of the European North. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk = Proceedings of the Samara Scientific Center of the Russian Academy of Sciences. 2012; 14 (5-2): 557–560. [In Russian].

15. Gruzdeva O.V., Barbarash O.L., Akbasheva O.E., Fedorova T.S., Palicheva E.I., Kashtalap V.V., Dyleva Yu.A., Silonova A.A., Sionina E.V., Uchasova E.G. Role of plasminogen activator inhibitor and free fatty acids in diagnosis of insulin resistance in patients with myocardial infarction. Sakharnyy diabet = Diabetes Mellitus. 2011; 14 (4): 18–23. [In Russian]. doi: 10.14341/2072-0351-5811

16. Shiman I.G., Mazaev V.P., Popov Ju.M., Rjazanova S.V., Kuznecova G.V. Dependence of the long-term prognosis of the course of ischemic heart disease on the content of lipophilic antioxidants and polyunsaturated fatty acids in the adipose tissue of patients with acute myocardial infarction. Rossijskij kardiologicheskij zhurnal = Russian Journal of Cardiology. 2004; 48 (4): 58–64. [In Russian]. doi: 10.15829/1560-4071-2004-4- 58-64

17. Otto O., Nettleton J.A., Lemaitre R.N., Steffen L.M., Kromhout D.; Rich S.S., Tsai M.Y., Jacobs D.R., Mozaffarian D. Biomarkers of dairy fatty acids and risk of cardiovascular disease in the multi-ethnic study of atherosclerosis. J. Am. Heart Assoc. 2013; 2 (4): e00009. doi: 10.1161/JAHA.113.000092

18. Egorova M.V., Afanas’ev S.A. Regulatory role of free fatty acids in maintaining membrane homeostasis of heart mitochondria in experimental myocardial ischemia] Byulleten’ sibirskoy meditsiny = Bulletin of Siberian Medicine. 2012; 11 (3) 31–38. [In Russian]. doi: 10.20538/1682-0363-2012-3-31-37

19. Yang R.-F., Zhang H., Wang Z., Liu X.-Y., Lin Z. A study on the relationship between waist phenotype, hypertriglyceridemia, coronary artery lesions and serum free fatty acids in adult and elderly patients with coronary diseases. Immun. Ageing. 2018; 15: 14. doi: 10.1186/s12979-018-0119-6

20. Osipenko A.N. Fatty acids and fatty aldehydes as contributors to atherogenesis. Sibirskiy meditsinskiy zhurnal = Siberian Medical Journal. 2012; 27 (2): 123–126. [In Russian].

21. Shramko V.S. Changes in the balance of fatty acids in patients with coronary atherosclerosis. Sibirskiy meditsinskiy zhurnal (Tomsk) = Siberian Medical Journal (Tomsk). 2017; 32 (1): 28–30. [In Russian]. doi: 10.29001/2073-8552-2017-32-1-28-30

22. Govorin A.V., Lareva N.V., Hyshiktuyev B.S., Filev A.P. Changes in the fatty acid composition of blood plasma lipids in hypertensive patients. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2003; 41 (3): 19–24. [In Russian]. doi: 10.15829/1560-4071-2003-3-19-24

23. Goncharova E.V., Govorin A.V. The dynamics of fatty acids in the red blood cells anemic patients with cardiomyopathy on background treatment with drugs iron and selenium. Sibirskiy meditsinskiy zhurnal (Irkutsk) = Siberian Medical Journal (Irkutsk). 2014; 126 (3): 65–68. [In Russian].

24. Mukha N.V., Govorin A.V., Perevalova E.B., Zajtsev D.N. Fatty acid composition of blood serum lipids in patients with type 1 diabetes mellitus in the stage of decompensation depending on the severity of diabetic ketoacidosis. Arkhiv vnutrenney meditsiny = Archive of Internal Medicine. 2019; 9 (3): 182–187. [In Russian].

25. Salakhova L.R., Nikitina E.V., Garusov A.V. Express determination of fatty acids in capillary blood by gas chromatography. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta imeni Andreya Nikolayevicha Tupoleva = Bulletin of the Kazan State Technical University named after Andrei Nikolaevich Tupolev. 2007; 3 (4): 27–32. [In Russian].

26. Osipenko A.N., Akulich N.V. The relevance of the study of the level of fatty aldehydes in blood in ischemic heart disease and atherosclerosis. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2012; 94 (2): 34–37. [In Russian]. doi: 10.15829/1560-4071-2012-2-34-37

27. Goncharova E.V., Govorin A.V. Fatty acid composition of erythrocyte membrane lipids in patients with anemic myocardial dystrophy. Vestnik Volgogradskogo gosudarstvennogo universiteta = Science Journal of Volgograd State University. 2007; 23 (3): 10–12. [In Russian].

28. Serebrjakova O.V., Govorin A.V., Prosyanik V.I., Baksheeva E.V. Fractional composition of fatty acids in complicated hypothyroidism. Dal’nevostochnyy meditsinskiy zhurnal = Far Eastern Medical Journal. 2008; (2): 19–21. [In Russian].

29. Vlasov A.A., Salikova S.P., Grinevich V.B., Bystrova O.V., Osipov G.A., Zaplatina A.A. Dynamics of indicators of polyunsaturated fatty acids in the blood of patients with chronic heart failure. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2018: 153 (1): 27–31 [In Russian]. doi: 10.15829/1560-4071-2018-1-27-31

30. Jakovleva A.Ju., Pevnev A.A., Abanin A.M., Seropjan M.Ju. The role of unesterified fatty acids in diagnostic of fat embolism. Klinicheskaya laboratornaya diagnostika = Russian Clinical Laboratory Diagnostics. 2017; 62 (5): 271–274. [In Russian]. doi: 10.18821/0869-2084-2017-62-5-271-274

31. Kushnarenko N.N., Govorin A.V. Clinical significance of changes in fatty acids in patients with primary gout with arterial hypertension. Ratsional’naya farmakoterapiya v kardiologii = Rational Pharmacotherapy in Cardiology. 2012; 8 (2):190–195. [In Russian]. doi:10.20996/1819-6446-2012-8-2-70-74

32. Kushnarenko N.N., Medvedeva T.A., Govorin A.V., Mishko M.Ju. The role of changes in the fatty acid composition of erythrocyte membranes in the formation of cardiohemodynamic disorders in patients with gout with insulin resistance syndrome. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiologyology. 2018; 23 (5): 49–55. [In Russian]. doi: 10.15829/1560-4071-2018-5-49-55

33. Coverdale J.P.C., Katundu K.G.H., Sobczak A.I.S., Arya S., Blindauer C.A., Stewart A.J. Ischemia-modified albumin: Crosstalk between fatty acid and cobalt binding. Prostaglandins Leukot. Essent. Fatty Acids. 2018; 135: 147–157. doi: 10.1016/j.plefa.2018.07.014

34. Martynov A.I., Voevoda M.I., Arutjunov G.P., Kokorin V.A., Spasskij A.A. Clinical efficacy of early diagnosis of acute myocardial infarction using fatty acid binding protein. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2012; 95 (3): 7–11. [In Russian]. doi: 10.15829/1560-4071-2012-3- 7-11

35. Rjabov V.V., Kirgizova M.A., Markov V.A. Use of a rapid test for the determination of cardiac fatty acid binding protein in the diagnosis of acute myocardial infarction] Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2014; 106 (2): 84–88. [In Russian]. doi: 10.15829/1560-4071-2014-2-84-88

36. Kashtanova E.V., Voevoda M.I., Kuimov A.D., Polonskaja Ja.V., Lozhkina N.G., Ragino Ju.I. Cardiac fatty acid binding protein in acute coronary syndrome. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2014; 93 (1): 84–88. [In Russian]. doi: 10.15829/1560-4071-2012-1-31-34

37. Zhang L., Wang F., Wang J., Wang Y., Fang Y. Intestinal fatty acid-binding protein mediates atherosclerotic progress through increasing intestinal inflammation and permeability. J. Cell Mol. Med. 2020; 24 (9): 5205–5212. doi: 10.1111/jcmm.15173

38. Parfenova N.S., Tanyanskiy D.A. Adiponectin: beneficial effects on metabolic and cardiovascular dysfunctions. Arterial’naya gipertenziya = Arterial Hypertension. 2013; 19 (1): 84–96. [In Russian]. doi: 10.18705/1607-419X-2013-19-1-84-96

39. Schrieks I.C., Nozza A., Stahli B.E., Buse J.B., Henry R.R., Malmberg K., Neal B., Nicholls S.J., Ryden L., Mellbin L., Svensson A., Wedel H., Weichert A., Lincoff A.M., Tardif J.-C., Grobbee D.E., Schwartz G.G. Adiponectin, free fatty acids, and cardiovascular outcomes in patients with type 2 diabetes and acute coronary syndrome. Diabetes Care. 2018; 41 (8): 1792–1800. doi: 10.2337/dc18-0158

40. Lincoff A.M., Tardif J.-C., Neal B., Nichols S.J., Rydén L., Schwartz G.G., Malmberg K., Buse J.B., Henry R.R., Wedel H., Weichert A., Cannata R., Grobbee D.E. Evaluation of the dual peroxisome proliferator- activated receptor α/γ agonist aleglitazar to reduce cardiovascular events in patients with acute coronary syndrome and type 2 diabetes mellitus: Rationale and design of the AleCardio trial. Am. Heart J. 2013; 166 (3): 429–434. doi: 10.1016/j.ahj.2013.05.013

41. Mirna M., Topf A., Wernly B., Rezar R., Paar V., Jung C., Salmhofer H., Kopp K., Hoppe U.C., Schulze P.C., Kretzschmar D., Schneider M.P., Schultheiss U.T., Sommerer C., Paul K., Wolf G., Lichtenauer M., Busch M. Novel biomarkers in patients with chronic kidney disease: An analysis of patients enrolled in the GCKD-study. J. Clin. Med. 2020; 9 (3): 886. doi: 10.3390/jcm9030886

42. Zhao C., Hu Y., Chen H., Li B., Cao L., Xia J., Yin Y. An in vitro evaluation of the effects of different statins on the structure and function of human gut bacterial community. PLoS One. 2020; 15 (3): 200–230. doi: 10.1371/journal.pone.0230200

43. Galjavich A.S., Salakhova L.R. Atorvastatin and the concentration of fatty acids in the blood in patients with IHD. Ateroskleroz i dislipidemii = The Journal of Atherosclerosis and Dyslipidemias. 2011; (1): 18–22. [In Russian].

44. Bol’shedvorskaya O.A., Protasov K.V., Batunova E.V., Dvornichenko V.V., Batorova E.R., Kazankova E.G. Dynamics of biomarkers of myocardial damage after extracardiac surgery in patients with coronary heart disease while taking trimetazidine MV. Rossiyskiy kardiologicheskij zhurnal = Russian Journal of Cardiology. 2017; 144 (4): 93–98. [In Russian].


Review

Views: 594


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)