Preview

Сибирский научный медицинский журнал

Advanced search

Bronchial granulocytes in the development of epithelial destruction and oxidative lipid modification in patients with bronchial asthma with cold and osmotic airway hyperresponsiveness

https://doi.org/10.18699/SSMJ20210206

Abstract

Free radical damage to the respiratory tract in patients with asthma leads to the destruction of the bronchial parenchyma and the generation of signaling molecules of inflammation by parenchymal cells. Objective: to study the role of the structural and functional status of granulocytes in the development of epithelial destruction and oxidative lipid modification in the bronchi of asthma patients with airway hyperresponsiveness to cold and hyperosmolar stimuli. Material and methods. In 48 asthma patients, the level of asthma control was assessed according to the Asthma Control Test (ACT) questionnaire; lung function; bronchial response to 3-minute isocapnic hyperventilation with cold (- 20 °C) air (IHCA) and with ultrasonic inhalation of hypertonic (4.5 %) NaCl solution (IHS). The cellular composition and the degree of cellular destruction in induced sputum (IS) were measured. Reaction products for enzymes from the group of heme-containing peroxidases (myeloperoxidase in neutrophils, peroxidase in eosinophils) with the calculation of the average cytochemical coefficient were studied. The content of lipid peroxidation products in according to ultraviolet absorption spectra of lipid extracts in exhaled breath condensate (EBC) was assessed. Results. Patients of group 1 (n=15) with airway hyperresponsiveness to IHCA and IHS in relation to group 2 (n=33) with a negative reaction had lower ACT (14.7±1.4 vs. 18.4±0.8 points, p=0.017). In sputum, the number of neutrophils in groups 1 and 2 was 41.8±6.4 vs. 33.6±3.4 %, eosinophils – 23.5±3.5 vs. 14.9±2.6 %; average cytochemical coefficient of peroxidase 117.5±12.5 vs. 88.8±8.9 pixels (p=0.07), cell destruction index (CDI) of bronchial epithelium 0.56±0.04 vs. 0.39±0.02 r.u. (p =0.0002). The content of diene conjugates (E233) in EBC in group 1 was higher than in group 2 (0.07±0.008 vs. 0.05±0.005 optical units, p˂0.05). A correlation was found between peroxidase level and CDI, the number of totally destroyed cells (IV class of cell destruction), between the number of neutrophils in IS and E233, as well as the ratio of E233 to E206 (non-oxidized lipids) in EBC. Conclusion. In asthma patients with airway hyperresponsiveness to cold and hyperosmolar stimuli, changes in the structure of the epithelium and the structural and functional profile of granulocytes are associated with the activation of the peroxidase function of granulocytes and are interrelated with lipid peroxidation.

About the Authors

A. B. Pirogov
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Aleksey B. Pirogov, candidate of medical sciences 

675000, Blagoveshchensk, Kalinin str., 22



A. G. Prikhodko
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Аnnа G. Prikhodko, doctor of medical sciences 

675000, Blagoveshchensk, Kalinin str., 22



Ju. M. Perelman
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Juliy M. Perelman, doctor of medical sciences, professor, corresponding member of RAS 

675000, Blagoveshchensk, Kalinin str., 22



References

1. Соодаева С.К. Свободнорадикальные механизмы повреждения при болезнях органов дыхания. Пульмонология. 2012; 22 (1): 5–10. doi: 10.18093/0869-0189-2012-0-1-5-10 Soodaeva S.K. Free radical mechanisms of injury in respiratory disease. Pul’monologiya = Russian Pulmonology. 2012; 1: 5–10. [In Russian]. doi: 10.18093/0869-0189-2012-0-1-5-10

2. Конищева А.Ю., Гервазиева В.Б., Лаврентьева Е.Е. Особенности структуры и функции респираторного эпителия при бронхиальной астме. Пульмонология. 2012; 22 (5): 85–91. doi: 10.18093/0869-0189-2012-0-5-85-91 Konishcheva A.Yu., Gervazieva V.B., Lavrentyeva E.E. Changes in structure and function of respiratory epithelium in bronchial asthma. Pul’monologiya = Russian Pulmonology. 2012; 22 (5): 85–91. [In Russian]. doi: 10.18093/0869-0189-2012-0-5-85-91

3. Ofman G., Tipple T.E. Thiol-redox regulation in lung development and vascular remodeling. Antioxid. Redox Signal. 2019; 31 (12): 858–873. doi: 10.1089/ars.2018.7712

4. Wang Y., Mao G., Lv Y., Huang Q., Wang G. MicroRNA-181b stimulates inflammation via the nuclear factor-κB signaling pathway in vitro. Exp. Ther. Med. 2015; 10 (4): 1584–1590. doi: 10.3892/etm.2015.2702

5. Маянский А.Н., Маянский Н.А., Заславская М.И. Нуклеарный фактор-kВ и воспаление. Цитокины и воспаление. 2007; 6 (2): 3–9. Mayansky A.N., Mayansky N.A., Zaslavskaya M.I. Nuclear factor-kappa B and inflammation: activation and regulation. Tsitokiny i vospalenie = Cytokines and Inflammation. 2007; 6 (2): 3–9. [In Russian].

6. Куликов Е.С., Огородова Л.М., Фрейдин М.Б., Деев И.А., Селиванова П.А., Федосенко С.В., Кириллова Н.А. Молекулярные механизмы тяжелой бронхиальной астмы. Молекул. мед. 2013; 2: 24–32. Kulikov E.S., Ogorodova L.M., Freidin M.B., Deev I.A., Selivanova P.A., Fedosenko S.V., Kirillova N.A. Molecular mechanisms of severe asthma. Molekulyarnaya meditsina = Molecular Medicine. 2013; 2: 24–32. [In Russian].

7. Naumov D.E., Perelman J.M., Kolosov V.P., Potapova T.A., Maksimov V.N., Zhou X. Transient receptor potential melastatin 8 gene polymorphism is associated with cold-induced airway hyperresponsiveness in bronchial asthma. Respirology. 2015; 20 (8): 1192– 1197. doi: 10.1111/resp.12605

8. Геренг Е.А., Суходоло И.В., Плешко Р.И., Огородова Л.М., Селиванова П.А., Дзюман А.Н. Цитоморфологический анализ ремоделирования бронхиальной стенки при различных типах бронхиальной астмы. Клин. мед. 2012; 90 (2): 24–27. Gereng E.A., Sukhodolo I.V., Pleshko R.I., Ogorodova L.M., Selivanova P.A., Dzyuman A.N. Cytomorphological analysis of remodeling of the bronchial wall in different types of bronchial asthma. Klinicheskaya meditsina = Clinical Meditsine. 2012; 90 (2): 24–27. [In Russian].

9. Панасенко О.М., Горудко И.В., Соколов А.В. Хлорноватистая кислота как предшественник свободных радикалов в живых системах. Успехи биол. химии. 2013; 53: 195–244. Panasenko O.M., Gorudko I.V., Sokolov A.V. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry (Moscow). 2013; 78: 1466– 1489.

10. WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects, 2018. Available at: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/

11. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention (2019 update). Available at: www.ginasthma.org

12. Перельман Ю.М., Приходько А.Г. Методика комбинированной диагностики нарушений кондиционирующей функции и холодовой гиперреактивности дыхательных путей. Бюл. физиол. и патол. дыхания. 2002; (12): 22–28. Perelman J.M., Prikhodko A.G. Combined diagnostics technique of assessing conditioning function and cold hyperreactivity of respiratory tract. Byulleten’ fiziologii i patologii dykhaniya = Bulletin of Physiology and Pathology of Respiration. 2002; (12): 22–28. [In Russian].

13. Перельман Ю.М., Наумов Д.Е., Приходько А.Г., Колосов В.П. Механизмы и проявления осмотической гиперреактивности дыхательных путей. Владивосток: Дальнаука, 2016. 239 c. Perelman J.M., Naumov D.E., Prikhodko A.G., Kolosov V.P. Mechanisms and manifestations of osmotic airway hyperresponsiveness. Vladivostok: Dal’nauka, 2016. 239 p. [In Russian].

14. Матвеева Л.А. Местная защита респираторного тракта у детей. Томск: Изд-во Том. ун-та, 1993. 276 с. Matveeva L.А. Local protection of the respiratory tract in children. Tomsk, 1993. 276 p. [In Russian].

15. Хейхоу Ф.Г.Дж., Кваглино Д. Гематологическая цитохимия. М.: Медицина, 1983. 320 c. Hauhoe F.G.J., Quaglino D. Hematologic cytochemistry. Moscow: Meditsina, 1983. 320 p. [In Russian].

16. Ульянычев Н.В. Системность научных исследований в медицине. Saarbrücken: LAP LAMBERT, 2014. 140 c. Ul’yanychev N.V. Systematic research in medicine. Saarbrücken: LAP LAMBERT, 2014. 140 p. [In Russian].

17. Kawai Y., Kiyokawa H., Kimura Y., Kato Y., Koichiro Ts., Terao J. Нypochlorous acid-derived modification of phospholipids: characterization of aminophospholipids as regulatory molecules for lipid peroxidation. Biochemistry. 2006; 45: 14201–14211. doi: 10.1021/bi0610909

18. Snelgrove R.J., Patel D.F., Patel T., Lloyd C.M. The enigmatic role of the neutrophil in asthma: Friend, foe or indifferent? Clin. Exp. Allergy. 2018; 48 (10): 1275–1285. doi: 10.1111/cea.13191

19. Krishnamoorthy N., Oriss T. B., Paglia M., Fei M., Yarlagadda M., Vanhaesebroeck В., Ray A., Ray P. Activation of c-Kit in dendritic cells regulates T helper cell differentiation and allergic asthma. Nat. Med. 2008; 14 (5): 565–573. doi: 10.1038/nm1766

20. Lim H.F., Nair P. Airway inflammation and inflammatory biomarkers. Semin. Respir. Crit. Care Med. 2018; 39 (1): 56–63. doi: 10.1055/s-0037-1606217

21. Нashimoto S., Matsumoto K., Gon Y., Takahashi N. Update on airway inflammation and remodeling in asthma. Allergy Clin. Immunol. Int. 2007; 19 (5): 178–174. doi: 10.1027/0838-1925.19.5.178


Review

For citations:


Pirogov A.B., Prikhodko A.G., Perelman J.M. Bronchial granulocytes in the development of epithelial destruction and oxidative lipid modification in patients with bronchial asthma with cold and osmotic airway hyperresponsiveness. Сибирский научный медицинский журнал. 2021;41(2):40-48. (In Russ.) https://doi.org/10.18699/SSMJ20210206

Views: 323


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)