Preview

Сибирский научный медицинский журнал

Advanced search

Features and quantitative characteristics of the interaction of benzo[a]pyrene with fractions of the human blood plasma lipoproteins

https://doi.org/10.18699/SSMJ20210204

Abstract

The paper considers the features and quantitative characteristics of the interaction of human blood plasma low (LDL), very low (VLDL) and high density lipoproteins (HDL) with a polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P). Material and methods. The studies were performed using preparative ultracentrifugation of human plasma lipoprotein fractions and fluorescence spectroscopy. Results. The spectral characteristics of tryptophan fluorescence of VLDL, LDL and HDL fractions during titration with B[a]P solution are presented. The interaction of LP fractions with B[a]P was accompanied by quenching of tryptophanil fluorescence: the greatest decrease in fluorescence at saturating concentrations of B[a]P was noted for the HDL fraction — over 80 %; the effect of B[a]P was weaker for LDL (65-74 %) and for VLDL (50-60 %) of the initial level. Based on the results of the tryptophan fluorescence quenching curves and taking into account the molecular weights, quantitative characteristics of the interaction of the LP fractions with B[a]P were obtained: the association constants were of the order of (1.3 - 2.5) × 10-6 M, and the number of binding sites for B[a] P on LP particles ranged from 19 for HDL and up to 43 for VLDL. Conclusion. The quantitative characteristics of the interaction obtained for the complexes of LP with B[a]P allow us to consider the LP of blood plasma as real transport forms for B[a]P and other hydrophobic compounds into the cells of organs and tissues of the body.

About the Authors

L. M. Polyakov
Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Lev M. Polyakov, doctor of medical sciences, professor 

630117, Novosibirsk, Timakov str., 2



R. A. Knyasev
Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Roman A. Knyazev, candidate of biological sciences 

630117, Novosibirsk, Timakov str., 2



M. V. Kotova
Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Marya V. Kotova 

630117, Novosibirsk, Timakov str., 2



E. I. Soloveva
Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Elena I. Soloveva 

630117, Novosibirsk, Timakov str., 2



A. V. Ryabchenko
Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Aleksandr V. Ryabchenko, candidate of biological sciences 

630117, Novosibirsk, Timakov str., 2



References

1. Page D., Boehm P.D., Douglas G.S., Bence A.E., Burns W.A., Mankiewicz P.J. Pyrogenic polycyclic aromatic hydrocarbons in sediments record past human activity: a case study in Prince William Sound, Alaska. Mar. Pollut. Bul. 1999; 38 (4): 247–260.

2. Bostrom C.E., Gerde P., Hanberg A., Jernstrom B., Johansson C., Kyrklund T., Rannug A., Törnqvist M., Victorin K., Westerholm R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 2002; 110 (3): 451–488. doi: 10.1289/ehp.110-1241197

3. Brevik A., Lindeman B., Rusnakova V., Olsen A.K., Brunborg G., Duale N. Paternal benzo[а] pyrene exposure affects gene expression in the early developing mouse embryo. Toxicol. Sci. 2012; 129 (1): 157–165. doi: 10.1093/toxsci/kfs187

4. Moffat I., Chepelev N., Labib S., Bourdon-Lacombe J., Kuo B., Buick J.K., Lemieux F., Williams A., Halappanavar S., Malik A., Luijten M., Aubrecht J., Hyduke D.R., Fornace A.J. Jr, Swartz C.D., Recio L., Yauk C.L. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water. Crit. Rev. Toxicol. 2015; 45 (1): 1–43. doi: 10.3109/10408444.2014.973934

5. Castelli F., Librando V., Sarpietro M.G. Calorimetric approach of the interaction and absorption of polycyclic aromatic hydrocarbons with model membranes. Environ. Sci. Technol. 2002; 36 (12): 2717– 2723. doi: 10.1021/es010260w

6. Verma N., Pink M., Petrat F., Rettenmeier A.W., Schmitz-Spanke S. Exposure of primary porcine urothelial cells to benzo(a)pyrene: in vitro uptake, intracellular concentration, and biological response. Arch. Toxicol. 2012; 86 (12): 1861–1871. doi: 10.1007/s00204-012-0899-y

7. Safe S., Lee S.O., Jin U.H. Role of the arylhydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol. Sci. 2013; 135 (1): 1–16. doi: 10.1093/toxsci/kft128

8. Vauhkonen M., Kuusi T., Kinnunen P.K. Serum and tissue distribution of benzol[α]pyrene from intravenously injected chylomicrons in rat in vivo. Cancer Lett. 1980; 11 (2): 113–119. doi: 10.1016/0304-3835(80)90101-9

9. Polyakov L.M., Chasovskikh M.I., Panin L.E. Binding and treatment of benzo(a)pyrene by blood plasma lipoproteins: The possible role of apolipoprotein B in this process. Bioconjug. Chem. 1996; 7 (4): 396–400. doi: 10.1021/bc960005e

10. Поляков Л.М., Князев Р.А., Рябченко А.В., Котова М.В., Трифонова Н.В. Липопротеины крови как платформа для транспорта гидрофильных и гидрофобных соединений. Сиб. науч. мед. ж. 2019; 39 (4): 30–36. doi: 10.15372/SSMJ20190404 Polyakov L.M., Knyazev R.A., Ryabchenko A.V., Kotova M.V., Trifonova N.V. Blood lipoproteins as a platform for transport of hydrophilic and hydrophobic compounds. Sibirskiy nauchnyy meditsinskiy zhurnal = Siberian Scientific Medical Journal. 2019; 39 (4): 30–36. [In Russian]. doi: 10.15372/SSMJ20190404

11. Brown M.S., Goldstein J.L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997, 89 (3): 331–340. doi: 10.1016/s0092-8674(00)80213-5

12. Shu H.P., Bymun E.N. Systemic excretion of benzo(a)pyrene in the control and microsomally induced rat: the influence of plasma lipoproteins and albumin as carrier molecules. Cancer Res. 1983; 43 (2): 485–90.

13. Busbee D.L., Norman J.O., Ziprin R.L. Comparative uptake, vascular transport, and cellular internalization of aflatoxin-B1 and benzo(a)pyrene. Arch. Toxicol. 1990; 64: 285–290. doi: 10.1007/bf01972988

14. Hatch F.T., Lees R.S. Practical method for plasma lipoprotein analysis. Adv. Lipid Res. 1968; 6: 2–68. doi: 10.1016/B978-1-4831-9942-9.50008-5

15. Поляков Л.М., Суменкова Д.В., Князев Р.А., Панин Л.Е. Анализ взаимодействия липопротеинов и стероидных гормонов. Биомед. химия. 2011; 57 (3): 308–313. doi: 10.18097/pbmc20115703308 Polyakov L.M., Sumenkova D.V., Knyazev R.A., Panin L.E. The analysis of interaction lipoproteins and steroid hormones. Biomeditsinskaya khimiya = Biomedical Chemistry. 2011; 57 (3): 308–313. [In Russian]. doi: 10.18097/pbmc20115703308

16. Layeghkhavidaki H., Lanhers M.-C., Akbar S., Lynn G-P., Thierry O., Grova N., Appenzeller B., Jasniewski J., Feidt C., Corbier C., Yen F.T. Inhibitory action of benzo[α]pyrene on hepatic lipoprotein receptors in vitro and on liver lipid homeostasis in mice. PLoS One. 2014; 9 (7): e102991. doi: 10.1371/journal.pone.0102991


Review

For citations:


Polyakov L.M., Knyasev R.A., Kotova M.V., Soloveva E.I., Ryabchenko A.V. Features and quantitative characteristics of the interaction of benzo[a]pyrene with fractions of the human blood plasma lipoproteins. Сибирский научный медицинский журнал. 2021;41(2):28-32. (In Russ.) https://doi.org/10.18699/SSMJ20210204

Views: 267


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)