Preview

Сибирский научный медицинский журнал

Advanced search

Possibilities of radionuclide visualization of HER2/neu-positive breast cancer using a radiopharmaceutical based on recombinant targeting molecules DARPin9_29

https://doi.org/10.15372/SSMJ20200405

Abstract

Epidermal growth receptor HER2/neu is still of great interest, the overexpression of which is most often observed in patients with breast cancer and accounts for 15–20 % of cases. Present methods of HER2/neu determination have a number of significant drawbacks. In recent years, alternative framework proteins are used for the targeted radionuclide imaging. Molecules of DARPin (Design Ankyrin Repeat Protein) are one of representatives of scaffolds. Material and methods. The study included 4 breast cancer patients (T1-2N0-1M0) who were not receiving systemic therapy at the time of the study: in 2 patients, HER2/neu overexpression was noted, in 2 patients – not detected. HER2/neu status was determined using an immunohistochemical method and a FISH assay. At the preclinical stage, radiopharmaceutical 99mTc-DARPin9_29 was injected intravenously to all patients, «WholeBody» scintigraphy and single-photon emission computed tomography were performed 2 hours after injection. Results. The distribution of radiopharmaceuticals in organs 2 hours after injection revealed the greatest accumulation in the liver and kidneys. In studying of tumor/background indicator it was revealed that values of the studied parameter in patients with overexpression of HER2 receptors are more than 3 times higher than the values in the subgroup of patients with negative expression of this marker. Conclusion. According to the results of preliminary studies, the 99mTc-DARPin9_29 demonstrated significant differences between tumors with and without HER2/neu overexpression.

About the Authors

O. D. Bragina
Cancer Research Institute, Tomsk National Research Medical Center of RAS; National Research Tomsk Polytechnic University, Russian Federation
Russian Federation
Olga D. Bragina, candidate of medical sciences


V. I. Chernov
Cancer Research Institute, Tomsk National Research Medical Center of RAS; National Research Tomsk Polytechnic University, Russian Federation
Russian Federation
Vladimir I. Chernov, doctor of medical sciences, professor


A. A. Medvedeva
Cancer Research Institute, Tomsk National Research Medical Center of RAS
Russian Federation
Anna A. Medvedeva, candidate of medical sciences


R. V. Zelchan
Cancer Research Institute, Tomsk National Research Medical Center of RAS; National Research Tomsk Polytechnic University, Russian Federation
Russian Federation
Roman V. Zelchan, candidate of medical sciences


M. S. Larkina
National Research Tomsk Polytechnic University, Russian Federation; Siberian State Medical University of Minzdrav of Russia
Russian Federation
Maria S. Larkina, candidate of pharmaceutical sciences


S. M. Deyev
National Research Tomsk Polytechnic University, Russian Federation; Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of RAS
Russian Federation
Sergei M. Deyev, doctor of biological sciences, professor, corresponding member of RAS


V. M. Tolmachev
National Research Tomsk Polytechnic University, Russian Federation; Uppsala University
Russian Federation
Vladimir M. Tolmachev, professor


References

1. Telugu R.B., Chowhan A.K., Rukmangadha N., Patnayak R., Phaneendra B.V., Prasad B.C., Reddy M.K. Human epidermal growth factor receptor 2/neu protein expression in meningiomas: An immunohistochemical study. J. Neurosci. Rural Pract. 2016; 7 (4): 526–531. doi: 10.4103/0976-3147.188640

2. Zavyalova M., Vtorushin S., Krakhmal N., Savelieva O., Tashireva L., Kaigorodova E., Perelmuter V., Telegina N., Denisov E., Bragina O., Slonimskaya E., Choynzonov E. Clinicopathological features of nonspecific invasive breast cancer according to its molecular subtypes. Exp. Oncol. 2016; 38 (2): 122–127. doi: 10.31768/2312-8852.2016.38(2):122-127

3. Romond E.H., Perez E.A., Bryant J., Suman V.J., Geyer C.E.Jr., Davidson N.E., Tan-Chiu E., Martino S., Paik S., Kaufman P.A., Swain S.M., Pisansky T.M., Fehrenbacher L., Kutteh L.A., Vogel V.G., Visscher D.W., Yothers G., Jenkins R.B., Brown A.M., Dakhil S.R., Mamounas E.P., Lingle W.L., Klein P.M., Ingle J.N., Wolmark N. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 2005; 353: 1673–1684. doi: 10.1056/NEJMoa052122

4. Orlando L., Viale G., Bria E., Lutrino E.S., Sperduti I., Carbognin L., Schiavone P., Quaranta A., Fedele P., Caliolo C., Calvani N., Criscuolo M., Cinieri S. Discordance in pathology report after central pathology review: Implications for breast cancer adjuvant treatment. Breast. 2016; 30: 151–155. doi: 10.1016/j.breast.2016.09.015

5. Zahid M., Khan S., Khan R., Shireen A., Fatima S. Detection of Her2/neu gene amplification by fluorescence in situ hybridization technique. Pathology. 2016; 48 (1): 163–170. doi: 10.1016/j.pathol.2015.12.447

6. Chernov V.I., Bragina O.D., Zel’chan R.V., Medvedeva A.A., Sinilkin I.G., Larkina M.S., Stasyuk E.S., Nesterov E.A., Skuridin V.S. Labeled somatostatin analogues in theranostics of neuroendocrine tumors. Meditsinskaya radiologiya i radiatsionnaya bezopasnost’ = Medical Radiology and Radiation Safety. 2017; 62 (3): 42–49. [In Russian].

7. Chernov V.I., Medvedeva A.A., Sinilkin I.G., Zelchan R.V., Bragina O.D., Choinzonov E.L. Nuclear medicine as a tool for diagnosis and targeted cancer therapy. Byulleten’ sibirskoy meditsiny = Bulletin of Siberian Medicine. 2017; 16 (3): 25–33. [In Russian]. doi: 1682-0363-2018-1-220-231

8. Chernov V.I., Sinilkin I.G., Zelchan R.V., Medvedeva A.A., Lyapunov A.Yu., Bragina O.D., Varlamova N.V., Skuridin V.S. Experimental study of 99mTc-aluminum oxide use for sentinel lymph nodes detection. Physics of Cancer: Interdisciplinary Problems and Clinical Applications, PC 2016: Proceedings of the International conference on physics of cancer: interdisciplinary problems and clinical applications. 2016; 1760: 020012. doi: 10.1063/1.4960231

9. Garousi J., Honarvar H., Andersson K.G., Mitran B., Orlova A., Buijs J., Löfblom J., Frejd F.Y., Tolmachev V. Comparative evaluation of affibody molecules for radionuclide imaging of in vivo expression of carbonic anhydrase IX. Mol Pharm. 2016; 13 (11): 3676–3687. doi: 10.1021/acs.molpharmaceut.6b00502

10. Bragina O.D., Chernov V.I., Zelchan R.V., Sinilkin I.G., Medvedeva A.A., Larkina M.S. Alternative scaffolds in radionuclide diagnosis of malignancies. Byulleten’ sibirskoy meditsiny = Bulletin of Siberian medicine. 2019; 18 (3): 125–133. [In Russian]. doi: 1682-0363-2019-3-125-133

11. Nicholes N., Date A., Beaujean P., Hauk P., Kanwar M., Ostermeier M. Modular protein switches derived from antibody mimetic proteins. Protein Eng. Des. Sel. 2016; 29: 77–85. doi: 10.1093/protein/gzv062

12. Tolmachev V., Orlova A., Andersson K. Methods for radiolabelling of monoclonal antibodies. Methods Mol. Biol. 2014; 1060: 309–330. doi: 10.1007/978-1-62703-586-6_16

13. Stumpp M.T., Binz H.K., Amstutz P. DARPins: A new generation of protein therapeutics. Drug Discov. Today. 2008; 13 (15): 695–701. doi: 10.1016/j.drudis.2008.04.013

14. Binz H.K., Stumpp M.T., Forrer P., Amstutz P., Pluckthun A. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 2003; 332: 489–503. doi:10.1016/s0022-2836(03)00896-9

15. Goldstein R., Sosabowski J., Livanos M., Leyton J., Vigor K., Bhavsar G., Nagy-Davidescu G., Rashid M., Miranda E., Yeung J., Tolner B., Plückthun A., Mather S., Meyer T., Chester K. Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging. Eur. J. Nucl. Med. Mol. Imaging. 2015; 42 (2): 288–301. doi: 10.1007/s00259-014-2940-2

16. Boersma Y.L., Pluckthun A. DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr. Opin. Biotechnol. 2011; 22: 849–857. doi: 10.1016/j.copbio.2011.06.004

17. Hanenberg M., McAfoose J., Kulic L., Welt T., Wirth F., Parizek P., Strobel L., Cattepoel S., Späni C., Derungs R., Maier M., Plückthun A., Nitsch R.M. Amyloid-β peptide-specific DARPins as a novel class of potential therapeutics for Alzheimer disease. J. Biol. Chem. 2014; 26: 27080–27089. doi: 10.1074/jbc.M114.564013

18. Hausammann S., Vogel M., Kremer J.A., Lacroix-Desmazes S., Stadler B.M., Horn M.P. Designed ankyrin repeat proteins: a new approach to mimic complex antigens for diagnostic purposes? PLoS One. 2013; 8: 1–9. doi: 10.1371/journal.pone.0060688

19. Houlihan G., Gatti-Lafranconi P., Lowe D., Hollfelder F. Directed evolution of anti-HER2 DARPins by SNAP display reveals stability/function trade-offs in the selection process. Protein Eng. Des. Sel. 2015; 28 (9): 269–279. doi: 10.1093/protein/gzv029

20. Kramer L., Renko M., Završnik J., Turk D., See­ger M.A., Vasiljeva O., Grütter M.G., Turk V., Turk B. Non-invasive in vivo imaging of tumour-associated ca­thepsin B by a highly selective inhibitory DARPin. The­ranostics. 2017; 8: 2806–2821. doi: 10.7150/thno.19081

21. Moody P., Chudasama V., Nathani R.I., Maruani A., Martin S., Smith M.B., Caddick S. A rapid, site-selective and efficient route to the dual modification of DARPins. Chem. Commun. (Camb.). 2014: 50 (38): 4898–4900. doi: 10.1039/c4cc00053f

22. Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnos­tics, and therapy. Annu. Rev. Pharmacol. Toxicol. 2015; 55: 489–511. doi: 10.1146/annurev-pharmtox-010611-134654

23. Tamaskovic R., Simon M., Stefan N., Schwill M., Plückthun A. Designed ankyrin repeat proteins (DARPins) from research to therapy. Methods Enzymol. 2012; 503: 101–134. doi: 10.1146/annurev-pharmtox-010611-134654

24. Vorobyeva A., Schulga A., Konovalova E., Güler R., Löfblom J., Sandström M., Garousi J., Chernov V., Bragina O., Orlova A., Tolmachev V., Deyev S.M. Optimal composition and position of histidine-containing tags improves biodistribution of 99mTc-labeled DARPinG3. Sci. Rep. 2019: 9 (1); 9405. doi: 10.1038/s41598-019-45795-8

25. Bragina O.D., Larkina M.S., Stasyuk E.S., Chernov V.I., Yusubov M.S., Skuridin V.S., Deyev S.M., Zel’chan R.V., Buldakov M.A., Podrezova E.V., Belou­sov M.V. The development of a highly specific radiochemical compound based on labeled 99mtc recombinant molecules for targeted imaging of cells with the overexpression of Her2/neu. Byulleten’ sibirskoy me­ditsiny = Bulletin of Siberian Medicine. 2017; 16 (3): 25–33. [In Russian]. doi: 1682-0363-2017-3-25-33

26. Vorobyeva A., Bragina O., Altai M., Mitran B., Orlova A., Shulga A., Proshkina G., Chernov V., Tolmachev V., Deyev S. Comparative evaluation of radioiodine and technetium-labeled DARPin 9_29 for radionuclide molecular imaging of HER2 expression in malignant tumors. Contrast Media Mol. Imaging. 2018; 2018: 6930425. doi: 10.1155/2018/6930425

27. Sandberg D., Tolmachev V., Velikyan I., Olofsson H., Wennborg A., Feldwisch J., Carlsson J., Lindman H., Sörensen J. Intra-image referencing for simplified assessment of HER2-expression in breast cancer metastases using the affibody molecule ABY-025 with PET and SPECT. Eur. J. Nucl. Med. Mol. Imaging. 2017; 44 (8): 1337–1346. doi: 10.1007/s00259-017-3650-3


Review

Views: 268


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)