Hyaluronidase pharmacological properties and clinical application in ophthalmology
https://doi.org/10.15372/SSMJ20200402
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Full Text:
Abstract
Corneal diseases are the fourth leading cause of blindness in the world, accounting for approximately 5 % of cases. Existing methods of treatment in more than 30 % of cases do not have a full therapeutic effect and when the process is stopped, they end with a persistent violation of corneal transparency, a decrease or complete loss of visual functions. The lack of effective means that evidence-based restore corneal transparency determines the relevance of the search for modern drugs and ways to deliver them, the possibilities of enhancing the therapeutic effect. The possibilities of using hyaluronidase preparations in ophthalmology are considered based on the study of its biological and pharmacological properties. Enzyme catalyzes the breakdown of acid mucopolysaccharides including hyaluronic acid by cleavage of the glycosidic bond β(1→4), the biological effect is determined by the molecular weight of the resulting fragments: high-molecular fragments have antiangiogenic properties, increased ability to bind fibrinogen, anti-inflammatory and immunosuppressive effects, and low-molecular fragments have pro-inflammatory activity and promote angiogenesis. The barrier function of the cornea is provided by the features of its anatomical structure, while the features of its regeneration with the formation of turbidity are accompanied by overexpression and migration to the stroma of cytokines TGF-β and PDGF, activation of myofibroblasts and the formation of a fibroproliferative response. The high anti-inflammatory, immunomodulatory, regenerative and antifibrotic activity of hyaluronidase, the possibility of its effect on a complex pathophysiological cascade of destructive processes and minimization of the scarring process stimulate more extensive experimental and clinical studies on the development of new methods of treating ophthalmic diseases using hyaluronidase drugs.
About the Authors
V. E. ZabanovaRussian Federation
Viktoriya E. Zabanova
A. Zh. Fursova
Russian Federation
Anzhella Zh. Fursova, doctor of medical sciences
P. G. Madonov
Russian Federation
Pavel G. Madonov, doctor of medical sciences
References
1. World Health Organization Blindness and vision impairment. Published October 11, 2018. Available at: https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
2. Ziaei M., Barsam A., Shamie N., Vroman D., Kim T., Donnenfeld E.D., Holland E.J., Kanellopoulos J., Mah F.S., Randleman J.B., Daya S., Güell J. ASCRS Cornea Clinical Committee. Reshaping procedures for the surgical management of corneal ectasia. J. Cataract Refract. Surg. 2015; 41 (4): 842-872. https://doi.org/10.1016/j.jcrs.2015.03.010
3. Khabriev R.U., Kamaev N.O., Danilova T.I., Kachoyan E.G. Features of action of hyaluronidase of various origin on connective tissue. Biomeditsinskaya khimiya = Biomedical Chemistry. 2016; 62 (1). 82-88. [In Russian]. https://doi.org/10.18097/PBMC20166201082
4. Meyer K. Hyaluronidases. In: The enzymes. Ed. P.D. Boyer. 3rd ed, v. V. N.Y.: Acad. Press, 1971. 307-320.
5. Meyer K., Palmer J.W. The polysaccharide of the vitreous humor. J. Biol. Chem. 1934; 107: 629-634.
6. Meyer K., Smyth E.M., Dawson M.H. The isolation of a mucopolysaccharide synovial fluid. J. Biol. Chem. 1939; 128: 319-327.
7. Chen W.Y., Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen. 1999; 7: 79-89. https://doi.org/10.1046/j.1524-475x.1999.00079.x
8. Day A.J., de la Motte C.A. Hyaluronan cross-linking: a protective mechanism in inflammation. Trends Immunol. 2005; 26 (12): 637-643. https://doi.org/10.1016/j.it.2005.09.009
9. Nagai N., Ito Y., Okamoto N., Shimomura Y. In vitro evaluation of corneal damages after instillation of eye drops using rat debrided corneal epithelium: changes in corneal damage of benzalkonium chloride by addition of thickening agent. Yakugaku Zasshi. 2012; 132 (7): 837-843. https://doi.org/10.1248/yakushi.132.837
10. Noble P.W. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol. 2002; 21 (1): 25-29. https://doi.org/10.1016/s0945-053x(01) 00184-6
11. Aya K.L., Stern R. Hyaluronan in wound healing: rediscovering a major player. Wound Repair Regen. 2014; 22 (5): 579-593. https://doi.org/10.1111/wrr.12214
12. West D.C., Hampson I.N., Arnold F., Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Science. 1985; 228 (4705): 1324-1326. https://doi.org/10.1126/science.2408340
13. Slevin M., Kumar S., Gaffney J. Angiogenic oligosaccharides of hyaluronan induce multiple signaling pathways affecting vascular endothelial cell mitogenic and wound healing responses. J. Biol. Chem. 2002; 277 (43): 41046-41059. https://doi.org/10.1074/jbc.M109443200
14. Saikia P., Roychowdhury S., Bellos D., Pollard K., McMullen M., McCullough R., McCullough A., Gholam P., de la Motte C., Nagy L.E. Hyaluronic acid 35 normalizes TLR4 signaling in Kupffer cells from ethanol-fed rats via regulation of microRNA291b and its target Tollip. Sci. Rep. 2017; 7 (1): 15671. https://doi.org/10.1038/s41598-017-15760-4
15. Bollyky P.L., Wu R.P., Falk B.A., Lord J.D., Long S.A., Preisinger A., Teng B., Holt G.E., Standifer N.E., Braun K.R., Xie C.F., Samuels P.L., Vernon R.B., Gebe J.A., Wight T.N., Nepom G.T. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc. Natl. Acad. Sci. USA. 2011; 108 (19): 7938-7943. https://doi.org/10.1073/pnas.1017360108
16. Palmieri B., Rottigni V., Iannitti T. Preliminary study of highly cross-linked hyaluronic acid-based combination therapy for management of knee osteoarthritis-related pain. Drug Des. Devel. Ther. 2013; 7: 7-12. https://doi.org/10.2147/DDDT.S37330
17. Cagini C., Torroni G., Fiore T., Cerquaglia A., Lupidi M., Aragona P., Iaccheri B. Tear film stability in sjögren syndrome patients treated with hyaluronic acid versus crosslinked hyaluronic acid-based eye drops. J. Ocul. Pharmacol. Ther. 2017; 33 (7): 539-542. https://doi.org/10.1089/jop.2016.0149
18. Zheng X., Goto T., Shiraishi A., Ohashi Y. In vitro efficacy of ocular surface lubricants against dehydration. Cornea. 2013; 32 (9):1260-1264. https://doi.org/10.1097/ICO.0b013e31829cfd44
19. Nakamura M., Mishima H., Nishida T., Otori T. Binding of hyaluronan to plasma fibronectin increases the attachment of corneal epithelial cells to a fibronectin matrix. J. Cell. Physiol. 1994; 159 (3): 415-422. https://doi.org/10.1002/jcp.1041590305
20. Liu X., Yu F.F., Zhong Y.M., Guo X.X., Mao Z. Therapeutic effects of sodium hyaluronate on ocular surface damage induced by benzalkonium chloride preserved anti-glaucoma medications. Chin. Med. J. 2015; 128 (18): 2444-2449. https://doi.org/10.4103/0366-6999.164927
21. Yu F., Liu X., Zhong Y., Guo X., Li M., Mao Z., Xiao H., Yang S. Sodium hyaluronate decreases ocular surface toxicity induced by benzalkonium chloride-preserved latanoprost: an in vivo study. Invest. Ophthalmol. Vis. Sci. 2013; 54 (5): 3385-3393. https://doi.org/10.1167/iovs.12-11181
22. Nagai N., Murao T., Okamoto N., Ito Y. Comparison of corneal wound healing rates after instillation of commercially available latanoprost and travoprost in rat debrided corneal epithelium. J. Oleo Sci. 2010; 59 (3): 135-141. https://doi.org/10.5650/jos.59.135
23. Lin Z., Liu X., Zhou T., Wang Y., Bai L., He H., Liu Z. A mouse dry eye model induced by topical administration of benzalkonium chloride. Mol. Vis. 2011; 17: 257-264.
24. Breu W. Hyaluronidase. Wien. Med. Wochenschr. 1952; 102 (23): 435-437.
25. Atkinson W.S. Use of hyaluronidase with local anesthesia in ophthalmology; preliminary report. Arch. Ophthal. 1949; 42 (5): 628-633. https://doi.org/10.1001/archopht.1949.00900050638012
26. Harb G., Lebel F., Battikha J., Thackara J.W. Safety and pharmacokinetics of subcutaneous ceftriaxone administered with or without recombinant human hyaluronidase (rHuPH20) versus intravenous ceftriaxone administration in adult volunteers. Curr. Med. Res. Opin. 2010; 26 (2): 279-288. https://doi.org/10.1185/03007990903432900
27. Dubnitskaya L.V., Nazarenko T.A.. Chronic endometritis: diagnostic and treatment options. Consilium Medicum. 2007; 9 (6): 25-28. [In Russian].
28. Petrovich E.A., Kolesov A.A., Manuchin I.B. Safety and effectiveness of the drug longidase 3000 IU in the treatment of patients suffering from adhesions in the pelvis. Immunologiya = Immunology. 2006; (2): 124-126. [In Russian].
29. Kulakov V.I., Ovsyannikova T.V. The significance of laparoscopy in infertility clinics: the structure and frequency of pathology, the effectiveness of treatment. Problemy reproduktsii = Russian Journal of Human Reproduction. 1996; 2: 35-37. [In Russian].
30. Ivanova A.S., Yur’eva E.A., Dlin V.V. Fibrotic processes. Pathophysiology of connective tissue. Diagnostic methods and principles of fibrosis correction: diagnostic reference. Moscow: Overley, 2008. 196 p. [In Russian]
31. Gilson R.L., Gondal Z.A. Hyaluronidase. StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2020.
32. Lazarenko V.A., Loktionov A.L., Azarova Yu.E., Sunyaykina O.A., Konoplya A.I. Sorrection of cytokinsyntetic activity of peritoneal macrophages with longidaza at acute pancreatitis various etiology. Kurskiy nauchno-prakticheskiy vestnik «Chelovek i yego zdorov’ye» = Kursk Scientific and Practical Bulletin «Man and His Health». 2010; (4): 34-39. [In Russian].
33. Teodorovich O.V., Shatokhin M.N., Maltsev V.N., Konoplya A.I., Loctionov A.L., Krasnov A.V. Correction of immunometabolic disorders in prostatic adenoma in combination with chronic prostatitis. Urologiya = Urology. 2010; 5: 22-26. [In Russian].
34. Johnsson C., Tufveson G., Hällgren R. Monitoring of intragraft pressure of rejecting organs: increased tissue pressure can be reduced by hyaluronidase therapy. Transplantation. 2000; 70 (11): 157515-157580. https://doi.org/10.1097/00007890-200012150-00007
35. Yotsumoto G., Moriyama Y., Yamaoka A., Taira A. Experimental study of cardiac lymph dynamics and edema formation in ischemia/reperfusion injury - With reference to the effect of hyaluronidase. Angiology. 1998; 49 (4): 299-305. https://doi.org/10.1177/000331979804900408
36. Rowley S.A., Hale J.E., Finlay R.D. Sub-Tenon’s local anaesthesia: the effect of hyaluronidase. Br. J. Ophthalmol. 2000; 84 (4): 435-436. https://doi.org/10.1136/bjo.84.4.435
37. Shmyrova V.F., Ivanova A.S., Fedorov A.A., Petrov S.Yu., Makarova A.S. Medico-biological study of longidase. Part 1. Glaukoma = Glaucoma. 2011; (4): 5-10. [In Russian].
38. Zahavi A., Grigg J.R. Hyaluronidase injection for improved tissue dissection in Baerveldt tube surgery. Eur. J. Ophthalmol. 2018; 28 (3): 339-340. https://doi.org/10.5301/ejo.5001065
39. Zhi-Liang W., Wo-Dong S., Min L., Xiao-Ping B., Jin J. Pharmacologic vitreolysis with plasmin and hyaluronidase in diabetic rats. Retina. 2009; 29 (2): 269-274. https://doi.org/10.1097/IAE.0b013e3181923ff0
40. Kang S.W., Hyung S.M., Choi M.Y., Lee J. Induction of vitreolysis and vitreous detachment with hyaluronidase and perfluoropropane gas. Korean J. Ophthalmol. 1995; 9 (2): 69-78. https://doi.org/10.3341/kjo.1995.9.2.69
41. Puchalska-Niedbał L., Millo B. Efficacy of hyaluronidaze in reducing vitreous opacites-preliminary report. Klin. Oczna. 2002; 104 (2): 135-137. [In Polish].
42. Torricelli A.A., Singh V., Santhiago M.R., Wilson S.E. The corneal epithelial basement membrane: structure, function, and disease. Invest. Ophthalmol. Vis. Sci. 2013; 54 (9): 6390-6400. https://doi.org/10.1167/iovs.13-12547
43. Vesaluoma M., Teppo A.M., Grönhagen-Riska C., Tervo T. Release of TGF-beta 1 and VEGF in tears following photorefractive keratectomy. Curr. Eye Res. 1997; 16 (1): 19-25. https://doi.org/10.1076/ceyr.16.1.19.5119
44. Finnson K.W., McLean S., di Guglielmo G.M., Philip A. Dynamics of transforming growth factor beta signaling in wound healing and scarring. Adv. Wound Care (New Rochelle). 2013; 2 (5): 195-214. https://doi.org/10.1089/wound.2013.0429
45. Penn J.W., Grobbelaar A.O., Rolfe K.J. The role of the TGF-beta family in wound healing, burns and scarring: a review. Int. J. Burns Trauma. 2012; 2 (1): 18-28.
46. Karamichos D., Hutcheon A.E., Zieske J.D. Reversal of fibrosis by TGF-beta3 in a 3D in vitro model. Exp. Eye Res. 2014; 124: 31-36. https://doi.org/10.1016/j.exer.2014.04.020
47. Munger J.S., Sheppard D. Cross talk among TGF-beta signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb. Perspect. Biol. 2011; 3 (11): a005017. https://doi.org/10.1101/cshperspect.a005017
48. Matsuba M., Hutcheon A.E., Zieske J.D. Localization of thrombospondin-1 and myofibroblasts during corneal wound repair. Exp. Eye Res. 2011; 93 (4): 534-540. https://doi.org/10.1016/j.exer.2011.06.018
49. Chang Y., Wu X.-Y. The Role of c-jun n-terminal kinases 1/2 in transforming growth factor beta(1)-induced expression of connective tissue growth factor and scar formation in the cornea. J. Int. Med. Res. 2009; 37 (3): 727-736. https://doi.org/10.1177/147323000903700316
50. Moses H.L., Tucker R.F., Leof E.B., Coffey R.J., Halper J., Shipley G.D. Type β-transforming growth factor is a growth stimulator and a growth inhibitor. In: Cancer cells: growth factors and transformation. Eds. J. Feramisco, B. Ozanne, C. Stiles. N.Y.: Cold Spring Harbor Press, 1985. 65-71.
51. Holley R.W., Bohlen P., Fava R., Baldwin J.H., Kleeman G., Armour R. Purification of kidney epithelial cell growth inhibitors. Proc. Natl. Acad. Sci. USA. 1980; 77 (10): 5989-5992. https://doi.org/10.1073/pnas.77.10.5989
52. Roberts A.B. Molecular and cell biology of TGF-beta. Miner Electrolyte Metab. 1998; 24 (2-3): 111-119. https://doi.org/10.1159/000057358
53. Laiho M., Saksela O., Keski-Oja J. Transforming growth factor-beta induction of type-1 plasminogen activator inhibitor. pericellular deposition and sensitivity to exogenous urokinase. Biol. Chem. 1987; 262 (36): 17467-17474.
54. Liu W., Wang D.R., Cao Y.L. TGF-beta: a fibrotic factor in wound scarring and a potential target for anti-scarring gene therapy. Curr. Gene Ther. 2004; 4 (1): 123-136. https://doi.org/10.2174/1566523044578004
55. Chang N.S. Hyaluronidase enhancement of TNF-mediated cell death is reversed by TGF-beta 1. Am. J. Physiol. 1997; 273 (6): 1987-1994. https://doi.org/10.1152/ajpcell.1997.273.6.C1987
56. Chang N.S. Transforming growth factor-β1 blocks the enhancement of tumor necrosis factor cytotoxicity by hyaluronidase Hyal-2 in L929 fibroblasts. BMC Cell Biol. 2002; 3: 8. https://doi.org/10.1186/1471-2121-3-8
57. Jester J.V., Huang J., Petroll W.M., Cavanagh H.D. TGFbeta induced myofibroblast differentiation of rabbit keratocytes requires synergistic TGFbeta, PDGF and integrin signaling. Exp. Eye Res. 2002; 75 (6): 645-657. https://doi.org/10.1006/exer.2002.2066
58. Kaur H., Chaurasia S.S., de Medeiros F.W., Agrawal V., Salomao M.Q., Singh N., Ambati B.K., Wilson S.E. Corneal stroma PDGF blockade and myofibroblast development. Exp. Eye Res. 2009; 88 (5): 960-965. https://doi.org/10.1016/j.exer.2008.12.006
59. Stramer B.M., Fini M.E. Uncoupling keratocyte loss of corneal crystallin from markers of fibrotic repair. Invest. Ophthalmol Vis Sci. 2004; 45 (11): 4010-4015. https://doi.org/10.1167/iovs.03-1057
60. Stepp M.A., Zieske J.D., Trinkaus-Randall V., Kyne B.M., Pal-Ghosh S., Tadvalkar G., Pajoohesh-Ganji A. Wounding the cornea to learn how it heals. Exp. Eye Res. 2014; 121: 178-193. https://doi.org/10.1016/j.exer.2014.02.007
61. Wilson S.E. Corneal myofibroblast biology and pathobiology: generation, persistence, and transparency. Exp. Eye Res. 2012; 99 (1): 78-88. https://doi.org/10.1016/j.exer.2012.03.018
62. Jester J.V., Moller-Pedersen T., Huang J., Sax C.M., Kays W.T., Cavangh H.D., Petroll W.M., Piatigorsky J. The cellular basis of corneal transparency: evidence for ‘corneal crystallins’. J. Cell Sci. 1999; 112 (5): 613-622.
63. Torricelli A.A., Singh V., Agrawal V., Santhiago M.R., Wilson S.E. Transmission electron microscopy analysis of epithelial basement membrane repair in rabbit corneas with haze. Invest. Ophthalmol. Vis. Sci. 2013; 54 (6): 4026-4033. https://doi.org/10.1167/iovs.13-12106
64. Medeiros C.S., Marino G.K., Santhiago M.R., Wilson S.E. The corneal basement membranes and stromal fibrosis. Invest. Ophthalmol. Vis. Sci. 2018; 59 (10): 4044-4053. https://doi.org/10.1167/iovs.18-24428
65. Wilson S.E., Marino G.K., Torricelli A.A.M., Medeiros C.S. Injury and defective regeneration of the epithelial basement membrane in corneal fibrosis: a paradigm for fibrosis in other organs? Matrix Biol. 2017; 64: 17-26. https://doi.org/10.1016/j.matbio.2017.06.003
66. Dinarello C.A. Interleukin-1. Cytokine Growth Factor Rev. 1997; 8 (4): 253-265. https://doi.org/10.1016/s1359-6101(97)00023-3
67. Weng J., Mohan R.R., Li Q., Wilson S.E. IL-1 upregulates keratinocyte growth factor and hepatocyte growth factor mRNA and protein production by cultured stromal fibroblast cells: interleukin-1 beta expression in the cornea. Cornea. 1997; 16 (4): 465-471.
68. Mohan R.R., Liang Q., Kim W.J., Helena M.C., Baerveldt F., Wilson S.E. Apoptosis in the cornea: further characterization of Fas/Fas ligand system. Exp. Eye Res. 1997; 65 (4): 575-589. https://doi.org/10.1006/exer.1997.0371
69. Egorov V.V., Smolyakova G.L., Gohua T.I., Borisova T.V. Clinical evaluation of a new physiotherapy technology in the complex treatment of bacterial corneal inflammation. Prakticheskaya meditsina = Practical medicine. 2017; 2: 72-77. [In Russian].
Review
ISSN 2410-2520 (Online)