Preview

Сибирский научный медицинский журнал

Advanced search

DIRECTED RE-PROGRAMMING OF SOMATIC CELLS: ADVANTAGES AND LIMITATIONS OF INDUCED PLURIPOTENT STEM CELLS (REVIEW)

https://doi.org/10.15372/SSMJ20180403

Abstract

Stem cells are divided into embryonic and adult stem cells. The relevance of the use of stem cells in clinical practice has received new evidence in recent years however, the methods of obtaining stem cells for medical purposes cause ethical rejection. An alternative to the stem cells is the induced pluripotent cells. These cells are multipotential and comparable with features of embryonic stem cells but with additional advantages: their preparation allows to avoid many ethical problems associated with the use of embryonic material, their use reduces the risk of immune rejection. The possibility of somatic cells reprogramming into pluripotent stem cells opens the great prospects for regenerative medicine. An applying of directional reprogramming method makes possible to obtain practically any cell type from induced stem cells of the patient to use in autologous cell therapy. Induced pluripotent stem cells can also be used to model the human diseases and for screening of medicines. However, there are still a number of obstacles that need to be overcome before the use of induced pluripotent stem cells will be involved to routine clinical practice. This review examines the history of the creation of induced pluripotent stem cells and recent advances in the reprogramming of somatic cells, as well as the challenges that need to be overcome in order to apply this strategy in clinical practice.

About the Authors

A. V. Korel
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan of Minzdrav of Russia
Russian Federation


S. B. Kuznetsov
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan of Minzdrav of Russia
Russian Federation


References

1. Audouy S., Hoekstra D. Cationic lipid-mediated transfection in vitro and in vivo (review) // Mol. Membr. Biol. 2001. 18. (2). 129-143.

2. Bao G. CRISPR/Cas9-based genome editing for treating sickle cell disease // Abstr. AAAS Annual Meeting, Austin, February 15-19, 2018. https://aaas.confex.com/aaas/2018/meetingapp.cgi/Paper/21361.

3. Briggs R., King T.J. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs // Proc. Natl. Acad. Sci. USA. 1952. 38. (5). 455-463.

4. Bunnell B.A., Flaat M., Gagliardi C., Patel B., Ripoll C. Adipose-derived stem cells: Isolation, expansion and differentiation // Methods. 2008. 45. (2). 115-120.

5. Chin M.H., Mason M.J., Xie W., Volinia S., Singer M., Peterson C., Ambartsumyan G., Aimiuwu O., Richter L., Zhang J., Khvorostov I., Ott V., Grunstein M., Lavon N., Benvenisty N., Croce C.M., Clark A.T., Baxter T., Pyle A.D., Teitell M.A., Pelegrini M., Plath K., Lowry W.E. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures // Cell Stem Cell. 2009. 5. 111-123.

6. Chou B.K., Mali P., Huang X., Ye Z., Dowey S.N., Resar L.M., Zou C., Zhang Y.A., Tong J., Cheng L. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures // Cell Res. 2011. 21. (3). 518-529.

7. Cieslar-Pobuda A., Knoflach V., Ringh M.V., Stark J., Likus W., Siemianowicz K., Ghavami S., Hudecki A., Green J.L., Łos M.J. Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences // Biochim. Biophys. Acta. 2017. 1864. (7). 1359-1369.

8. De Vries W.N., Evsikov A.V., Brogan L.J., Anderson C.P., Graber J.H., Knowles B.B., Solter D. Reprogramming and differentiation in mammals: motifs and mechanisms // Cold Spring Harb. Symp. Quant. Biol. 2008. 73. 33-38.

9. Elango N., Elango S., Shivshankar P., Katz M.S. Optimized transfection of mRNA transcribed from a d(A/T)100 tail-containing vector // Biochem. Biophys. Res. Commun. 2005. 330. (3). 958-966.

10. Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos // Nature. 1981. 292. 154-156.

11. Fu J.D., Stone N.R., Liu L., Delgado-Olguin P., Ding S., Bruneau B.G., Srivastava D. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state // Stem Cell Reports. 2013. 1. (3). 235-247.

12. Fusaki N., Ban H., Nishiyama A., Saeki K., Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome // Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2009. 85. 348-362.

13. Gopalakrishnan S., Hor P., Ichida J.K. New approaches for direct conversion of patient fibroblasts into neural cells // Brain Res. 2017. 1656. 2-13.

14. Gurdon J.B., Byrne J.A. The first half-century of nuclear transplantation // Proc. Natl. Acad. Sci. USA. 2003. 100. (14). 8048-8052.

15. He T.C., Zhou S., da Costa L.T., Yu J., Kinzler K.W., Vogelstein B. A simplified system for generating recombinant adenoviruses // Proc. Natl. Acad. Sci. USA. 1998. 95. 2509-2514.

16. Holtkamp S., Kreiter S., Selmi A., Simon P., Koslowski M., Huber C., Türeci O., Sahin U. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells // Blood. 2006. 108. (13). 4009-4017.

17. Jia F., Wilson K.D., Sun N., Gupta D.M., Huang M., Li Z., Panetta N.J., Chen Z.Y., Robbins R.C., Kay M.A., Longaker M.T., Wu J.C. A nonviral minicircle vector for deriving human iPS cells // Nat. Methods. 2010. 7. (3). 197-199.

18. Jungverdorben J., Till A., Brustle O. Induced pluripotent stem cell-based modeling of neurodegenerative diseases: a focus on autophagy // J. Mol. Med. 2017. 95. (7). 705-718.

19. Kumano K., Arai S., Hosoi M., Taoka K., Takayama N., Otsu M., Nagae G., Ueda K., Nakazaki K., Kamikubo Y., Eto K., Aburatani H., Nakauchi H., Kurokawa M. Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples // Blood. 2012. 119. (26). 6234-6242.

20. Li X., Zhang P., Wei C., Zhang Y. Generation of pluripotent stem cells via protein transduction // J. Dev. Biol. 2014. 58. 21-27.

21. Liu H., Zhaohui Y., Kim Y., Sharkis S., Jang Y.Y. Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes // Hepatology. 2010. 51. (5). 1810-1819.

22. Markoulaki S., Hanna J., Beard C., Carey B.W., Cheng A.W., Lengner C.J., Dausman J.A., Fu D., Gao Q., Wu S., Cassady J.P., Jaenisch R. Transgenic mice with defined combinations of drug-inducible reprogramming factors // Nat. Biotechnol. 2009. 27. 169-171.

23. Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells // Proc. Natl. Acad. Sci. USA. 1981. 78. 7634-8.

24. Maureen L. Condic totipotency: What it is and what it is not // Stem Cells Dev. 2014. 23. (8). 796-812.

25. Mendez-Ferrer S., Scadden D.T., Sanchez-Aguilera A. Bone marrow stem cells: Current and emerging concepts // Ann. N. Y. Acad. Sci. 2015. 1335. 32-44.

26. Meraviglia V., Zanon A., Lavdas A.A., Schwienbacher C., Silipigni R., Di Segni M., Chen H.S., Pramstaller P.P., Hicks A.A., Rossini A. Generation of induced pluripotent stem cells from frozen buffy coats using non-integrating episomal plasmids // J. Vis. Exp. 2015. 100. e52885.

27. Mitalipov S., Wolf D. Totipotency, pluripotency and nuclear reprogramming // Adv. Biochem. Eng. Biotechnol. 2009. 114. 185-199.

28. Nakhaei-Rad S., Bahrami A.R., Mirahmadi M., Matin M.M. New windows to enhance direct reprogramming of somatic cells towards induced pluripotent stem cells // Biochem. Cell Biol. 2012. 90. (2). 115-123.

29. Novak A., Shtrichman R., Germanguz I., Segev H., Zeevi-Levin N., Fishman B., Mandel Y.E., Barad L., Domev H., Kotton D., Mostoslavsky G., Binah O., Itskovitz-Eldor J. Enhanced reprogramming and cardiac differentiation of human keratinocytes derived from plucked hair follicles, using a single excisable lentivirus // Cell. Reprogram. 2010. 12. (6). 665-678.

30. Okita K., Ichisaka T., Yamanaka S. Generation of germline-competent induced pluripotent stem cells // Nature. 2007. 448. 313-7.

31. Okita K., Nakagawa M., Hyenjong H., Ichisaka T., Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors // Science. 2008. 322. (5903). 949-953.

32. Okita K., Yamakawa T., MatsumuraY., Sato Y., Amano N., Watanabe A., Goshima N., Yamanaka S. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells // Stem Cells. 2013. 31. 458-466.

33. Pasque V., Karnik R., Chronis C., Petrella P., Langerman J., Bonora G., Song J., Vanheer L., Sadhu Dimashkie A., Meissner A., Plath K. X Chromosome dosage influences DNA methylation dynamics during reprogramming to mouse iPSCs // Stem Cell Reports. 2018. 10. (5). 1537-1550.

34. Rajaei B., Shamsara M., Amirabad L.M., Massumi M., Sanati M.H. Pancreatic endoderm-derived from diabetic patient-specific induced pluripotent stem cell generates glucose-responsive insulin-secreting cells // J. Cell. Physiol. 2017. 232. (10). 2616-2625.

35. Rivera T., Haggblom C., Cosconati S., Karlseder J. A balance between elongation and trimming regulates telomere stability in stem cells // Nat. Struct. Mol. Biol. 2017. 24. (1). 30-39.

36. Sandmaier S.E.S., Telugu B.P.L. MicroRNA-mediated reprogramming of somatic cells into induced pluripotent stem cells // Cell. Reprogram. 2015. 1330. 29-36.

37. Seki T., Yuase S., Fukuda K. Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus // Nat. Protocols. 2012. 7. 718-728.

38. Shizuru J.A., NegrinR. S., Weissman I.L. Hematopoietic stem and progenitor cells: Clinical and preclinical regeneration of the hematolymphoid system // Annu. Rev. Med. 2005. 56. 509-538.

39. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors // Cell. 2007. 131. (5). 861-872.

40. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. 2006. 126. 663-676.

41. Takahashi K., Yamanaka S. A developmental framework for induced pluripotency // Development. 2015. 142. 3274-3285.

42. Tang R., Jing L., Willard V.P., Wu C., Guilak F., Chen J., Setton L.A. Differentiation of human induced pluripotent stem cells into nucleus pulposus-like cells // Stem Cell Res. Ther. 2018. 9. 61.

43. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M. Embryonic stem cell lines derived from human blastocysts // Science. 1998. 282. 1145-1147.

44. Warren L., Manos P.D., Ahfeldt T., Loh Y.H., Li H., Lau F., Ebina W., Mandal P.K., Smith Z.D., Meissner A., Daley G.Q., Brack A.S., Collins J.J., Cowan C., Schlaeger T.M., Rossi D.J. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA // Cell Stem Cell. 2010. 7. (5). 618-30.

45. Wernig M., Meissner A., Cassady J.P., Jaenisch R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts // Cell Stem Cell. 2008. 2. 10-12.

46. Wu Y.M., Huang Y.J., Chen P., Hsu Y.C., Lin S.W., Lai H.S., Lee H.S. Hepatocyte-like cells derived from mouse induced pluripotent stem cells produce functional coagulation factor IX in a hemophilia B mouse model // Cell Transpl. 2016. 25. (7). 1237-1246.

47. Xie M., Tang S.B., Li K., Ding S. Pharmacological reprogramming of somatic cells for regenerative medicine // Acc. Chem. Res. 2017. 50. (5). 1202-1211.

48. Yu J., Hu K., Smuga-Otto K., Tian S., Stewart R., Slukvin I.I., Thomson J.A. Human induced pluripotent stem cells free of vector and transgene sequences // Science. 2009. 324. (5928). 797-801.

49. Zang X., Gruz F.D., Remotti F., Matushasky I. Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming // Oncogene. 2013. 32. 2249-2260.

50. Zhou H., Wu S., Joo J.Y., Zhu S., Han D.W., Lin T., Trauger S., Bien G., Yao S., Zhu Y., Siuzdak G., Schöler H.R., Duan L., Ding S. Generation of induced pluripotent stem cells using recombinant proteins // Cell Stem Cell. 2009. 4. (5). 381-384.


Review

For citations:


Korel A.V., Kuznetsov S.B. DIRECTED RE-PROGRAMMING OF SOMATIC CELLS: ADVANTAGES AND LIMITATIONS OF INDUCED PLURIPOTENT STEM CELLS (REVIEW). Сибирский научный медицинский журнал. 2018;38(4):21-29. (In Russ.) https://doi.org/10.15372/SSMJ20180403

Views: 389


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)