Preview

Сибирский научный медицинский журнал

Advanced search

Russian population health-related quality of life indicators calculated using the EQ-5D-3L questionnaire

https://doi.org/10.15372/SSMJ20200314

Abstract

Objectives. The paper aims was forming the first health-related quality of life population indicators using EQ-5D–3L survey that represents the Russian population by gender and age, as well as by the attained level of education. Material and methods. For compiling population indicators, we use the EQ-5D-3L questionnaire. The study was conducted on the adult Russian population aged 18 to 75 years. A representative sample was 12616 respondents. Results. 59.3 % of the sample is in good health (profile 11111). The proportion of respondents reporting any health problems increases with age. The average score on a 100-point visual analogue scale is 72.4 (standard deviation 18,1; 95 per cent confidence interval from 72,1 to 72,7). Men, on average, tend to assess their health higher than women. However there are no statistically significant differences in health scores among educational groups, taking into account gender and age data. Conclusions. Comparison of health-related quality of life estimations with normative population data allows us to track differences in health between population groups, as well as to analyze the health status and progress in treating patients. The Russian health-related quality indicators from EQ-5D-3L survey are similar to the Hungary population indices, as well as to many European countries, the USA, and Argentina for age cohorts under 45 years of age. For the cohorts of respondents older than 45 years, Russian estimations are much lower than in other countries. This evidence confirms that borrowing scales from other countries for converting EQ-5D-3L values into a preference EQ-5D-3L index is not acceptable for Russian patients, especially for the elderly.

About the Authors

E. A. Aleksandrova
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics
Russian Federation

Ekaterina A. Aleksandrova, candidate of economical sciences

194100, Saint Petersburg, Kantemirovskaya st., 3A



A. R. Khabibullina
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics
Russian Federation
Alina R. Khabibullina194100, Saint Petersburg, Kantemirovskaya st., 3A


A. V. Aistov
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics
Russian Federation

Andrey V. Aistov, candidate of physico-mathematical sciences

194100, Saint Petersburg, Kantemirovskaya st., 3A



F. G. Garipova
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics
Russian Federation
Farida G. Garipova194100, Saint Petersburg, Kantemirovskaya st., 3A


Ch. J. Gerry
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics; Oxford School of Global and Area Studies, University of Oxford
Russian Federation

Christopher J. Gerry, professor

194100, Saint Petersburg, Kantemirovskaya st., 3A

Great Britain, OX2 6JF, Oxford, Woodstock rd., 62



A. P. Davitadze
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics
Russian Federation
Arsen P. Davitadze194100, Saint Petersburg, Kantemirovskaya st., 3A


E. A. Zazdravnykh
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics
Russian Federation

Evgenii A. Zazdravnykh, candidate of economical sciences

194100, Saint Petersburg, Kantemirovskaya st., 3A

Evgenii A. Zazdravnykh, candidate of economical sciences


D. V. Kislitsyn
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics
Russian Federation

Dmitrii V. Kislitsyn, candidate of economical sciences

194100, Saint Petersburg, Kantemirovskaya st., 3A



M. Yu. Kuznetsova
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics
Russian Federation
Mariya Yu. Kuznetsova194100, Saint Petersburg, Kantemirovskaya st., 3A


A. V. Kupera
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics
Russian Federation

Aleksandra V. Kupera, candidate of economical sciences

194100, Saint Petersburg, Kantemirovskaya st., 3A



A. Yu. Meylakhs
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics
Russian Federation
Anastasiya Yu. Meylakhs194100, Saint Petersburg, Kantemirovskaya st., 3A


P. A. Meylakhs
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics
Russian Federation

Petr A. Meylakhs, candidate of sociological sciences

194100, Saint Petersburg, Kantemirovskaya st., 3A



T. I. Rodionova
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics
Russian Federation
Tat’yana I. Rodionova194100, Saint Petersburg, Kantemirovskaya st., 3A


E. V. Taraskina
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics
Russian Federation
Elena V.Taraskina194100, Saint Petersburg, Kantemirovskaya st., 3A


D. S. Shchapov
Centre for Health Economics, Management and Policy, National Research University Higher School of Economics
Russian Federation
Dmitrii S. Shchapov194100, Saint Petersburg, Kantemirovskaya st., 3A


References

1. EQ-5D concepts and methods: a developmental history. Eds.: P. Kind, R. Brooks, R. Rabin. Netherlands: Springer, 2005: 251 p.

2. EuroQol Group. EuroQol-a new facility for the measurement of health-related quality of life. Health policy. 1990; 16 (3): 199–208. doi: 10.1016/0168-8510(90)90421-9

3. Janssen M.F., Szende A., Cabases J., Ramos-Goñi J.M., Vilagut G., König H.H. Population norms for the EQ-5D-3L: a cross-country analysis of population surveys for 20 countries. Eur. J. Health. Econ. 2019; 20 (2): 205–216. doi: 10.1007/s10198-018-0955-5

4. Александрова Е.А., Хабибуллина А.Р. Методология оценки качества жизни, связанного со здоровьем, с использованием опросника EQ-5D-3L. Рос. мед. журн. 2019; 25 (4): 202–209. doi: 10.18821/0869-2106-2019-25-4-202-209 @@ Aleksandrova E.A., Khabibullina A.R. Health-related quality of life measurement using EQ-5D-3L questionnaire. Rossiyskiy meditsinskiy zhurnal = Medical Journal of the Russian Federation. 2019; 25 (4): 202–209. [In Russian]. doi: 10.18821/0869-2106-2019-25-4-202-209

5. Devlin N.J., Brooks R. EQ-5D and the EuroQol group: past, present and future. Appl. Health Econ. Health Policy. 2017; 15 (2): 127–137. doi: 10.1007/s40258-017-0310-5

6. Janssen B., Szende A. Population norms for the EQ-5D. In: Self-reported population health: an international perspective based on EQ-5D. Dordrecht: Springer, 2014. Chapter 3: 19–33.

7. Kind P., Dolan P., Gudex C., Williams A. Variations in population health status: results from a United Kingdom national questionnaire survey. BMJ. 1998; 316 (7133): 736–741. doi: 10.1136/bmj.316.7133.736

8. Luo N., Johnson J.A., Shaw J.W., Feeny D., Coons S.J. Self-reported health status of the general adult US population as assessed by the EQ-5D and Health Utilities Index. Med. Care. 2005; 43 (11); 1078–1086. doi: 10.1097/01.mlr.0000182493.57090.c1

9. Scalone L., Cortesi P.A., Ciampichini R., Belisari A., D’Angiolella L.S., Cesana G., Mantovani L.G. Italian population-based values of EQ-5D health states. Value Health. 2013; 16 (5): 814–822. doi:10.1016/j.jval.2013.04.008

10. Shiroiwa T., Fukuda T., Ikeda S., Igarashi A., Noto S., Saito S., Shimozuma K. Japanese population norms for preference-based measures: EQ-5D-3L, EQ-5D-5L, and SF-6D. Quality of Life Research. 2016; 25 (3): 707–719. doi: 10.1007/s11136-015-1108-2

11. Александрова Е.А., Герри К.Дж., Кайнд П., Хабибуллина А.Р. Популяционные показатели качества жизни, связанного со здоровьем по опроснику EQ-5D. Здравоохранение Рос. Федерации. 2018; 62 (6): 295–303. doi: 10.18821/0044-197X-2018-62-6-295-303 @@ Aleksandrova E.A., Gerry C.J., Kind P., Khabibullina A.R. Health-related quality of life population indicators using EQ-5D questionnaire. Zdravookhranenie Rossiyskoy Federatsii = Health Care of the Russian Federation. 2018; 62 (6): 295–303. [In Russian]. doi: 10.18821/0044-197X-2018-62-6-295-303

12. Hays R.D., Anderson R., Revicki D. Psychometric considerations in evaluating health-related qua­lity of life measures. Qual. Life Res. 1993; 2 (6): 441–449. doi: 10.1007/bf00422218

13. Stavem K., Augestad L.A., Kristiansen I.S., Rand K. General population norms for the EQ-5D-3L in Norway: comparison of postal and web surveys. Health and quality of life outcomes. 2018; 16 (1): 204–213. doi: 10.1186/s12955-018-1029-1

14. Brazier J., Ratcliffe J., Saloman J., Tsuchiya A. Measuring and valuing health benefits for economic evaluation. Oxford University Press, 2017. 372 p. doi: 10.1093/med/9780198725923.001.0001

15. Khabibullina A., Gerry C.J. Valuing health states in Russia: A first feasibility study. Value Health Reg. Issues. 2019; 19: 75–80. doi: 10.1016/j.vhri.2019.01.005

16. Kim S.H., Jo M.W., Ock M., Lee S.I. Exploratory study of dimensions of health-related quality of life in the general population of South Korea. J. Prev. Med. Public Health. 2017; 50 (6): 361–368. doi: 10.3961/jpmph.16.076

17. McCaffrey N., Kaambwa B., Currow D.C., Ratcliffe J. Health-related quality of life measured using the EQ-5D-5L: South Australian population norms. Health Qual. Life Outcomes. 2016; 14 (1): 133–144. doi: 0.1186/s12955-016-0537-0

18. Feng Y., Devlin N., Herdman M. Assessing the health of the general population in England: how do the three-and five-level versions of EQ-5D compare? Health Qual. Life Outcomes. 2015, 13 (1): 171. doi: 10.1186/s12955-015-0356-8

19. Sørensen J., Davidsen M., Gudex C., Peder­sen K.M., Brønnum-Hansen H. Danish EQ-5D population norms. Scand. J. Public Health. 2009; 37 (5): 467–474. doi: 0.1177/1403494809105286

20. Sun S., Chen J., Johannesson M., Kind P., Xu L., Zhang Y., Burström K. Population health status in China: EQ-5D results, by age, sex and socio-economic status, from the National Health Services Survey 2008. Qual. Life Res. 2011; 20 (3): 309–320. doi: 10.1007/s11136-010-9762-x

21. Borgonovi F., Pokropek A. Education and self-reported health: Evidence from 23 countries on the role of years of schooling, cognitive skills and social capital. PloS One. 2016; 11 (2): e0149716. doi: 10.1371/journal.pone.0149716

22. Kularatna S., Whitty J.A., Johnson N.W., Jaya­singhe R., Scuffham P.A. EQ-5D-3L derived population norms for health related quality of life in Sri Lanka. PloS One. 2014; 9 (11), e108434. doi: 10.1371/journal.pone.0108434.


Review

For citations:


Aleksandrova E.A., Khabibullina A.R., Aistov A.V., Garipova F.G., Gerry Ch.J., Davitadze A.P., Zazdravnykh E.A., Kislitsyn D.V., Kuznetsova M.Yu., Kupera A.V., Meylakhs A.Yu., Meylakhs P.A., Rodionova T.I., Taraskina E.V., Shchapov D.S. Russian population health-related quality of life indicators calculated using the EQ-5D-3L questionnaire. Сибирский научный медицинский журнал. 2020;40(3):99-107. (In Russ.) https://doi.org/10.15372/SSMJ20200314

Views: 782


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)