Preview

Сибирский научный медицинский журнал

Advanced search

The safety of the use of the conditioned medium obtained by directed osteogenic induction of rat bone marrow mesenchymal stem cells

https://doi.org/10.15372/SSMJ20200206

Abstract

The purpose of the study was to evaluate in vitro cytotoxicity and in vivo sub-acute toxicity of conditioned medium obtained from rat bone marrow-derived mesenchymal stem cells directed to osteogenic differentiation. Material and methods. Conditioned medium was obtained by culturing rat bone marrow-derived MSCs induced under osteogenic condition. Results and discussion. Conditioned medium from rat bone marrow-derived MSCs was shown to have no significant cytotoxic effect on Ehrlich adenocarcinoma cell culture and in vitro expanded peripheral blood mononuclear cells from healthy donors. The use of MSC-CM did not have a significant effect on the state of experimental SD rats, the total body weight and growth rate of animals. A pathomorphologic study revealed no any abnormalities associated with MSC-CM injection. Conclusion. The use of conditioned medium from rat bone marrow-derived mesenchymal stem cells stimulated under osteogenic condition was found to be safe for both in vitro studies (with respect to Ehrlich adenocarcinoma cell line and peripheral blood mononuclear cells from healthy donors) and in vivo studies (injection of MSC-CM to animals).

About the Authors

L. A. Pokrovskaya
National Research Tomsk State University
Russian Federation

Lyubov’ A. Pokrovskaya

634050, Tomsk, Lenin av., 36



E. Yu. Sherstoboev
National Research Tomsk State University; Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center of RAS
Russian Federation

Evgeniy Yu. Sherstoboev, doctor of medical sciences, professor

634050, Tomsk, Lenin av., 36
634028, Tomsk, Lenin av., 3 



S. V. Nadezhdin
Belgorod National Research University
Russian Federation

Sergey V. Nadezhdin, candidate of biological sciences

308015, Belgorod, Pobedy str., 85



M. G. Danilets
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center of RAS
Russian Federation

Marina G. Danilets, doctor of biological sciences

634028, Tomsk, Lenin av., 3



E. S. Trofimova
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center of RAS
Russian Federation

Evgeniya S. Trofimova, candidate of medical sciences

634028, Tomsk, Lenin av., 3



A. A. Ligacheva
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center of RAS
Russian Federation

Anastasiya A. Ligacheva, candidate of biological sciences

634028, Tomsk, Lenin av., 3



A. A. Churin
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center of RAS
Russian Federation

Aleksey A. Churin, doctor of medical sciences

634028, Tomsk, Lenin av., 3



T. Yu. Dubskaya
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center of RAS
Russian Federation

Tat’yana Yu. Dubskaya, candidate of medical sciences

634028, Tomsk, Lenin av., 3



References

1. Athanasiou V.T., Papachristou D.J., Panagopoulos A., Saridis A., Scopa C.D., Megas P. Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits. Med. Sci. Monit. 2010; 16: 24–31.

2. Cantinieaux D., Quertainmont R., Blacher S., Rossi L., Wanet T., Noël A., Brook G., Schoenen J., Franzen R. Conditioned medium from bone marrow derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One. 2013; 8: e69515, doi:10.1371/journal.pone.0069515

3. Dawson J.I., Oreffo R.O. Bridging the regeneration gap: stem cells, biomaterials and clinical translation in bone tissue engineering. Arch. Biochem. Biophys. 2008; 473: 124–131. doi: 10.1016/j.abb.2008.03.024

4. Eppley B.L., Morales L., Wood R., Pensler J., Goldstein J., Havlik R.J., Habal M., Losken A., Williams J.K., Burstein F., Rozzelle A.A., Sadove A.M. Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: clinical experience in 1883 patients. Plast. Reconstr. Surg. 2004; 114: 850–856. doi: 10.1097/01.prs.0000132856.69391.43

5. Eppley B.L., Pietzak W.S., Blanton M.W. Allograft and alloplastic bone substitutes: a review of science and tеchnology for the craniomaxillofacial surgeon. J. Craniofac. Surg. 2005; 16: 981–989. doi:10.1097/01.scs.0000179662.38172.dd

6. Grayson W.L., Frohlich M., Yeager K., Bhumiratana S., Chan M.E., Cannizzaro C., Wan L.Q., Liu X.S., Guo X.E., Vunjak-Novakovic G. Engineering anatomically shaped human bone grafts. Proc. Natl. Acad. Sci. USA. 2010; 107: 3299–3304. doi: 10.1073/pnas.0905439106

7. Han Y., Li X., Zhang Y., Han Y., Chang F., Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019; 13; 8 (8). doi: 10.1007/5584_2018_213

8. Horie M., Choi H., Lee R.H., Reger R.L., Ylostalo J., Muneta T., Sekiya I., Prockop D.J. Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that enhances expression of type II collagen. Osteoarthritis Cartilage. 2012; 20: 1197–1207. doi: 10.1016/j.joca.2012.06.002

9. Ide C., Nakai Y., Nakano N., Seo T.B., Yamada Y., Endo K., Noda T., Saito F., Suzuki Y., Fukushima M., Nakatani T. Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in rat. Brain Res. 2010; 1332: 32–47. doi: 10.1016/j.brainres.2010.03.043

10. Kay A.G., Long G., Tyler G., Stefan A., Broadfoot S.J., Piccinini A.M., Middleton J., Kehoe O. Mesenchymal stem cell-conditioned medium reduces disease severity and immune responses in inflammatory arthritis. Sci. Rep. 2017; 7: e18019. doi: 10.1038/s41598-017-18144-w

11. Kinnaird T., Srabile E., Burnett M.S., Shou M., Lee C.W., Barr S., Fuchs S., Epstein S.E. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004; 109: 1543–1549. doi: 10.1161/01.CIR.0000124062.31102.57

12. Linero I., Chaparro O. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One. 2014; 10: e107001, doi: 10.1371/journal.pone.0107001

13. Minenna L., Herrero F., Sanz M., Trombelli L. Adjunctive effect of a polylactide/polyglycolide copolymer in the treatment of deep periodontal intraosseous defects: a randomized clinical trial. J. Clin. Periodontol. 2005; 32: 456–461. doi: 10.1111/j.1600051X.2005.00696.x

14. Patel D.M., Shah J., Srivastava A.S. Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem. Cells Int. 2013; 2013: 496218. doi: 10.1155/2013/496218

15. Pawitan J.A. Prospect of stem cell conditioned medium in regenerative medicine. BioMed. Res. Int. 2014; 2014: 1–14. doi: 10.1155/2014/965849

16. Perez J.R., Kouroupis D., Li D.J., Best T.M., Kaplan L., Correa D. Tissue Engineering and CellBased Therapies for Fractures and Bone Defects. Front. Bioeng. Biotechnol. 2018; 6: 105. doi: 10.3389/fbioe.2018.00105

17. Perri B., Cooper M., Lauryssen C., Anand N. Adverse swelling associated with use of rh-BMP-2 in anterior cervical discectomy and fusion: a case study. Spine J. 2007; 7: 235–239. doi: 10.1016/j.spinee.2006.04.010

18. Peter S.J., Liang C.R., Kim D.J., Widmer M.S., Mikos A.G. Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, beta-glycerolphosphate, and L-ascorbic acid. J. Cell Biochem. 1998; 71: 55–62. doi: 10.1002/(sici)10974644(19981001)71:1<55::aid-jcb6>3.0.co;2-0

19. Pittenger M.F., Mbalaviele G., Black M., Mosca J.D., Marshak D.R. Mesenchymal Stem Cells. In: Human cell culture. Eds. M.R. Koller, B.O. Palsson, J.R.W. Masters. Dordrecht: Springer, 2001. Vol. 5: 189–207. doi: 10.1007/0-306-46870-0_9

20. Sanchooli T., Norouzian M., Ardeshirylajimi A., Ghoreish S.K., Abdollahifar M.A., Nazarian H., Piryaei A. Adipose derived stem cells conditioned media in combination with bioceramic collagen scaffolds improved calvarial bone healing in hypothyroid rats. Iran. Red. Crescent. Med. J. 2017; 19: e45516. doi: 10.5812/ircmj.45516

21. Song I.H., Caplan A.I., Dennis J.E. In vitro dexamethasone pretreatment enhances bone formation of human mesenchymal stem cells in vivo. J. Orthop. Res. 2009; 27: 916–921. doi: 10.1002/jor.20838

22. Um S., Kim H.Y., Seo B.M. Effects of BMP-2 on the osteogenic differentiation of bone marrow stem cells in fibrous dysplasia. Oral. Dis. 2018; 6: 10571067. doi: 10.1111/odi.12869

23. Visser R., Rico-Llanos G.A., Pulkkinen H., Becerra J. Peptides for bone tissue engineering. J. Controlled Release. 2016; 244: 122–135. doi: 10.1016/j.jconrel.2016.10.024

24. Yun Y.R., Jang J.H., Jeon E., Kang W., Lee S., Won J.E., Kim H.W., Wall I. Administration of growth factors for bone regeneration. Regen. Med. 2012; 7: 369–385. doi: 10.2217/rme.12.1


Review

For citations:


Pokrovskaya L.A., Sherstoboev E.Yu., Nadezhdin S.V., Danilets M.G., Trofimova E.S., Ligacheva A.A., Churin A.A., Dubskaya T.Yu. The safety of the use of the conditioned medium obtained by directed osteogenic induction of rat bone marrow mesenchymal stem cells. Сибирский научный медицинский журнал. 2020;40(2):47-55. (In Russ.) https://doi.org/10.15372/SSMJ20200206

Views: 349


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)