Preview

Сибирский научный медицинский журнал

Advanced search

Morphological disturbances of rat parietal cortex and hippocampus neurons in the dynamics steady subtotal ischemia of the brain

https://doi.org/10.15372/SSMJ20200204

Abstract

The purpose of the work is to analyze changes in the morphological characteristics of neurons of phylogenetical different parts of the cerebral cortex (parietal cortex and hippocampus) of rats at different periods in the dynamics of stepwise subtotal experimental cerebral ischemia. Methods. The experiments were performed on 42 males of outbred white rats. Step subtotal cerebral ischemia was performed as follows: first, one common carotid artery was ligated, simulating partial ischemia. Then, with an interval of 1 day (subgroup 1), 3 days (subgroup 2) or 7 days (subgroup 3), the second common carotid artery was ligated. Results. A microscopic study of the size, shape, degree of chromatophilia of the cytoplasm and the content of ribonucleoproteins in pyramidal neurons of phylogenetically different parts of the cerebral cortex have shown the dependence of the severity of brain damage on the interval between the cessation of blood flow in both carotid artery. Adaptation was better with a 7-day interval between dressings, while the ligation with an interval of 1 day, the degree of morphological changes was maximum indicating a lack of resources for the implementation of adaptation mechanisms.

Keywords


About the Authors

E. I. Bon
Grodno State Medical University
Belarus

Elizaveta I. Bon, candidate of biological science

230009, Grodno, Gorkogo str., 80



N. E. Maksimovich
Grodno State Medical University
Belarus

Natalia E. Maksimovich, doctor of medical science, professor

230009, Grodno, Gorkogo str., 80



S. M. Zimatkin
Grodno State Medical University
Belarus

Sergey M. Zimatkin, doctor of biological science, professor

230009, Grodno, Gorkogo str., 80



N. A. Valko
Grodno State Medical University
Belarus

Nikita A. Valko

230009, Grodno, Gorkogo str., 80



V. N. Kot
Grodno State Medical University
Belarus

Victoria N. Kot

230009, Grodno, Gorkogo str., 80



References

1. Bon E.I., Maksimovich N.E. Methods of modeling morphological and functional markers of cerebral ischemia. Biomeditsina = Biomedicine. 2018; (2): 59–71. [In Russian].

2. Bon E.I., Zimatkin S.M. Microscopic organization of the rat isocortex. Novosti mediko-biologicheskikh nauk = News of Biomedical Sciences. 2017; 16 (2): 80–88. [In Russian].

3. Bon E.I., Maksimovich N.Ye., Zimatkin S.M. Morphofunctional disturbances in the hippocampus of rats after incomplete ischemia. Vestnik Smolenskoy gosudarstvennoy meditsinskoy akademii = Vestnik of Smolensk State Medical Academy. 2018; 17 (1): 24–29. [In Russian].

4. Dubchenko E.A., Ivanov A.V., Boiko A.N., Spirina N.N., Gusev E.I., Kubatiev A.A. Hyperhomocysteinemia and endothelial dysfunction in patients with cerebral vascular and autoimmune diseases. Zh. Nevrol. Psikhiatr. Im S.S. Korsakova. 2019; 119 (11): 133–138. doi: 10.17116/jnevro2019119111133

5. Karkishchenko N.N., Gracheva S.V. Guide to laboratory animals and alternative models in biomedical research. Moscow: Profil-2S, 2010. 358 p. [In Russian].

6. Samoilov M.O. The effect of mild hypobaric hypoxia in preconditioning regime on the expression of pcreb and nf-κb transcription factors in rat hippocampus before and after severe hypoxia. Morfologiya = Morphology. 2009; 136 (6): 38–42. [In Russian].

7. Semchenko V.V., Stepanov S.S., Alekseeva G.V. Postanoxic encephalopathy. Omsk, 1999. 446 p. [In Russian].

8. Shmidt-Niel’sen K. Physiology of animals: adaptation and environment: in 2 books. Vol. 1. Moscow: Mir, 1982. 416 p. [In Russian].

9. Yarygin N.E., Yarygin V.N. Pathological and adaptive changes in the neuron. Moscow: Meditsina, 1973. 191 p. [In Russian].

10. Bon L.I., Maksimovich N.E., Zimatkin S.M. Effects of experemental cerebral ishemia on metabolic characteristics of parietal cortex neurons. Bioprocess Engineering. 2018; 2 (1): 1–5. doi: 10.11648/j.be.20180201.11

11. Karakayali O., Utku U., Yilmaz S., Uzuner N. Neurological symptoms and evaluation of cerebral blood flow changes with synthetic cannabinoids use. J. Coll. Physicians. Surg. Pak. 2019; 29 (12): 1183–1188. doi: 10.29271/jcpsp.2019.12.1183

12. Kotoda M., Hishiyama S., Ishiyama T., Mitsui K., Matsukawa T. Amiodarone exacerbates brain injuries after hypoxic-ischemic insult in mice. BMC Neurosci. 2019; 20 (1): 62–67. doi: 10.1186/s12868019-0544-2

13. LaManna J.С., Vendel L.M., Farrell R.M. Brain adaptation to chronic hypobaric hypoxia in rats. J. Appl. Physiol. 1992; 72: 2238–2243. doi: 10.1152/jappl.1992.72.6.2238

14. Meerson F.Z., Malyshev I.Yu., Zamotrinsky A.V. Differences in adaptive stabilization of structures in response to stress and hypoxia relate with the accumulation of hsp 70 isoforms. Mol. Cell Biochem. 1992; 111: 87–95. doi: 10.1007/bf00229578

15. Murphy B.J., Andrews G.K., Bittel D., Discher D.J., McCue J., Green C.J., Yanovsky M., Giaccia A., Sutherland R.M., Laderoute K.R., Webster K.A. Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res. 1999; 59 (6): 13151322.

16. Patt S., Sampaolo S., Théallier-Jankó A., Tschairkin I., Cervós-Navarro J. Cerebral angiogenesis triggered by severe chronic hypoxia displays regional differences. J. Cereb. Blood Flow Metab. 1997; 17: 801–806. doi: 10.1097/00004647-199707000-00010

17. Paxinos G., Watson C. The Rat Brain in stereotaxic coordinates. Australia: Academic Press, 1998. 472 p.

18. Risau W. Mechanisms of angiogenesis. Nature. 1997; 386: 671–674. doi: 10.1038/386671a0


Review

Views: 380


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)