Preview

Сибирский научный медицинский журнал

Advanced search

Interferons lambda – therapeutic application

https://doi.org/10.15372/SSMJ20200202

Abstract

Interferons are a group of protein molecules with a broad spectrum of effects on the human body. Interferon lambda (type III interferon) was discovered comparatively recently about 20 years ago and its action is still poorly understood. However, the study of its properties and mechanisms of action is of great interest, since it not only has similarity with type I interferons, but has a number of distinctive features that create prerequisites for expanding its clinical use. Particularly, interferon lambda is not produced by all cells of the body, and therefore has a more targeted effect and lower systemic side effects than type I interferons. This review considers the biological activity of exogenous interferon lambda: the mechanisms of its antiviral, antitumor, antifungal and immunomodulatory activity. The possibility of its use in clinical practice for the treatment of such diseases as Sjogren’s syndrome, atopic asthma, autoimmune arthritis, various tumors, as well as against a various of RNA- and DNA-containing viruses that attack the anatomical barrier surface of the respiratory tract, gastrointestinal tract, blood-brain barrier and liver is discussed. This review also considers pegylated recombinant interferon lambda. Recent clinical studies have demonstrated a higher safety profile of pegylated interferon lambda compared with pegylated interferon alpha.

About the Authors

N. A. Kikhtenko
Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Nikolai A. Kikhtenko

630091, Novosibirsk, Krasnyi av., 52



L. A. Oleynik
Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Larisa A. Oleynik

630091, Novosibirsk, Krasnyi av., 52



V. K. Makarov
Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Vyacheslav K. Makarov

630091, Novosibirsk, Krasnyi av., 52



E. P. Nagorskaya
Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Elizaveta P. Nagorskaya

630091, Novosibirsk, Krasnyi av., 52



P. G. Madonov
Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Pavel G. Madonov, doctor of medical sciences

630091, Novosibirsk, Krasnyi av., 52



References

1. АArtamonov A.V., Bekarev A.A., Dygai A.M., Zhdanov V.V., Kinsht D.N., Madonov P.G., Sherstoboev E Yu. Pegylated interferon lambda for oral administration, and method for producing same. Patent 2678332 RF; Publ. 28.01.2019. [In Russian].

2. Grigoryan S.S. Interferon lambda (3rd type of interferons) and viral infections. Interferon-2011: coll. sci. papers. Moscow, 2012. 512. P. 63–72. [In Russian].

3. Maldov D.G., Andronova V.L., Grigoryan S.S., Isaeva E.I., Balakina A.A., Terentev A.A., Ilichev A.V., Galegov G.A. The mechanism of stimforte action on herpesvirus infection. Voprosy virusologii = Problems of Virology. 2018; 63 (5): 218–222. [In Russian]. doi: 10.18821/0507-4088-2018-63-5-218-223

4. Ank N., West H., Bartholdy C., Eriksson K., Thomsen A.R., Paludan S.R. Lambda interferon (IFNlambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J. Virol. 2006; 80 (9): 4501–4509. doi: 10.1128/JVI.80.9.4501-4509.2006

5. Bandi P., Pagliaccetti N.E., Robek M.D. Inhibition of type III interferon activity by orthopoxvirus immunomodulatory proteins. J. Interferon Cytokine Res. 2010; 30 (3): 123–134. doi: 10.1089/jir.2009.0049

6. Baños-Lara Mdel R., Harvey L., Mendoza A., Simms D., Chouljenko V.N., Wakamatsu N., Kousoulas K.G., Guerrero-Plata A. Impact and regulation of lambda interferon response in human metapneumovirus infection. J. Virol. 2015; 89 (1): 730–742. doi: 10.1128/JVI.02897-14

7. Bartlett N.W., Buttigieg K., Kotenko S.V., Smith G.L. Murine interferon lambdas (type III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection model. J. Gen. Virol. 2005; 86 (6): 1589–1596. doi: 10.1099/vir.0.80904-0

8. Blazek K., Eames H.L., Weiss M., Byrne A.J., Perocheau D., Pease J.E., Doyle S., McCann F., Williams R.O., Udalova I.A. IFN-l resolves inflammation via suppression of neutrophil infiltration and IL1b production. J. Exp. Med. 2015; 212: 845–853. doi:10.1084/jem.20140995

9. Caine E.A., Scheaffer S.M., Arora N., Zaitsev K., Artyomov M.N., Coyne C.B., Moley K.H., Diamond M.S. Interferon lambda protects the female reproductive tract against Zika virus infection. Nat. Commun. 2019; 10 (1): 280. doi: 10.1038/s41467-01807993-2

10. Carrick D.M. Interferon lambda: an immune system factor that cancer epidemiologists should consider. J. Interferon. Cytokine Res. 2019; 39 (10). 592–593. doi: 10.1089/jir.2019.0033 [Epub ahead of print]

11. Castillo-Martínez D., Juarez M., Patlán M., Páez A., Massó F., Amezcua-Guerra L.M. Type-III interferons and rheumatoid arthritis: Correlation between interferon lambda 1 (interleukin 29) and antimutated citrullinated vimentin antibody levels. Autoimmunity. 2017; 50 (2): 82–85. doi: 10.1080/08916934.2017.1289181

12. Chan H.L.Y., Ahn S.H., Chang T.T., Peng C.Y., Wong D., Coffin C.S., Lim S.G., Chen P.J., Janssen H.L.A., Marcellin P., Serfaty L., Zeuzem S., Cohen D., Critelli L., Xu D., Wind-Rotolo M., Cooney E.; LIRA-B Study Team. Peginterferon lambda for the treatment of HBeAg-positive chronic hepatitis B: A randomized phase 2b study (LIRA-B). J. Hepatol. 2016; 64 (5): 1011–1019. doi: 10.1016/j.jhep.2015.12.018

13. Cui L., Yu F., Ma J., Pei H., Zuo L. Effects of DENV-2 infection on the expression of IL-29 in primary HUVECs cultured on hydrogel substrates. Chinese Journal of Microbiology and Immunology (China). 2015; 35 (1): 7–13. doi: 10.3760/cma.j.issn.0254-5101.2015.01.002

14. Dantas A.T., Gonçalves S.M., Pereira M.C., de Almeida A.R., Marques C.D., Rego M.J., Pitta Ida R., Duarte A.L., Pitta M.G. Interferons and systemic sclerosis: correlation between interferon gamma and interferon-lambda 1 (IL-29). Autoimmunity. 2015; 48 (7): 429–433. doi: 10.3109/08916934.2015.1054028

15. Davidson S., McCabe T.M., Crotta S., Gad H.H., Hessel E.M., Beinke S., Hartmann R., Wack A. IFNλ is a potent anti-influenza therapeutic without the inflammatory side effects of IFNα treatment. EMBO Mol. Med. 2016; 8 (9): 1099–112. doi: 10.15252/emmm.201606413

16. Douam F., Soto Albrecht Y.E., Hrebikova G., Sadimin E., Davidson C., Kotenko S.V., Ploss A. Type III interferon-mediated signaling is critical for controlling live attenuated yellow fever virus infection in vivo. MBio. 2017; 8 (4): e00819-17. doi: 10.1128/mBio.00819-17

17. Espinosa V., Dutta O., McElrath C., Du P., Chang Y.J., Cicciarelli B., Pitler A., Whitehead I., Obar J.J., Durbin J.E., Kotenko S.V., Rivera A. Type III interferon is a critical regulator of innate antifungal immunity. Sci. Immunol. 2017; 2 (16): eaan5357. doi:10.1126/sciimmunol.aan53

18. Flisiak R., Shiffman M., Arenas J., Cheinquer H., Nikitin I., Dong Y., Rana K., Srinivasan S. A randomized study of peginterferon lambda-1a compared to peginterferon alfa-2a in combination with ribavirin and telaprevir in patients with genotype-1 chronic hepatitis C. PLoS One. 2016; 11 (10): e0164563. doi:10.1371/journal.pone.0164563

19. Ha Y.J., Choi Y.S., Kang E.H., Chung J.H., Cha S., Song Y.W., Lee Y.J. Increased expression of interferon-λ in minor salivary glands of patients with primary Sjögren’s syndrome and its synergic effect with interferon-α on salivary gland epithelial cells. Clin. Exp. Rheumatol. 2018; 36 (Suppl. 112, 3): 31–40.

20. Hausman D.F., Dodds M.G. Use of pegylated type III interferons for the treatment of hepatitis C. Patent WO2009149377A1; Publ. 10.12.2009.

21. Hermant P., Michiels T. Interferon-λ in the context of viral infections: production, response and therapeutic implications. J. Innate Immun. 2014; 6: 563–574. doi: 10.1159/000360084

22. Ilyushina N.A., Lugovtsev V.Y., Samsonova A.P., Sheikh F.G., Bovin N.V., Donnelly R.P. Generation and characterization of interferon-lambda 1-resistant H1N1 influenza A viruses. PLoS One. 2017; 12 (7): e0181999. doi: 10.1371/journal.pone.0181999

23. Jounai K., Sugimura T., Ohshio K., Fujiwara D. Oral administration of Lactococcus lactis subsp. lactis JCM5805 enhances lung immune response resulting in protection from murine parainfluenza virus infection. PLoS One. 2015; 10 (3): e0119055. doi: 10.1371/journal.pone.0119055

24. Kim H.J., Jo A., Jeon Y.J., An S., Lee K.M., Yoon S.S., Choi J.Y. Nasal commensal Staphylococcus epidermidis enhances interferon-λ-dependent immunity against influenza virus. Microbiome. 2019; 7 (1): 80. doi: 10.1186/s40168-019-0691-9

25. Kim S., Kim M.J., Kim C.H., Kang J.W., Shin H.K., Kim D.Y., Won T.B., Han D.H., Rhee C.S., Yoon J.H., Kim H.J. The superiority of IFN-λ as a therapeutic candidate to control acute influenza viral lung infection. Am. J. Respir. Cell. Mol. Biol. 2017; 56 (2): 202–212. doi: 10.1165/rcmb.2016-0174OC

26. Klinkhammer J., Schnepf D., Ye L., Schwaderlapp M., Gad H.H., Hartmann R., Garcin D., Mahlakõiv T., Staeheli P. IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. Elife. 2018; 7: e33354. doi: 10.7554/eLife.33354

27. Koch S., Finotto S. Role of interferon-l in allergic asthma. J. Innate Immun. 2015; 7: 224–230. doi: 10.1159/000369459

28. Kotenko S.V., Gallagher G., Baurin V.V., LewisAntes A., Shen M., Shah N.K., Langer J.A., Sheikh F., Dickensheets H., Donnelly R.P. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 2003; 4 (1): 69–77. doi: 10.1038/ni875

29. Lasfar A., Zloza A., Silk A.W., Lee L.Y., Cohen-Solal K.A. Interferon lambda: toward a dual role in cancer. J. Interferon Cytokine Res. 2019; 39 (1): 22–29. doi: 10.1089/jir.2018.0046

30. Lazear H.M., Nice T.J., Diamond M.S. Interferon-λ: immune functions at barrier surfaces and beyond. Immunity. 2015; 43 (1): 15–28. doi: 10.1016/j.immuni.2015.07.001

31. Lazear H.M., Daniels B.P., Pinto A.K., Huang A.C., Vick S.C., Doyle S.E., Gale M.Jr., Klein R.S., Diamond M.S. Interferon-λ restricts West Nile virus neuroinvasion by tightening the bloodbrain barrier. Sci. Transl. Med. 2015; 7: 284ra59. doi: 10.1126/scitranslmed.aaa4304

32. Lazear H.M., Schoggins J.W., Diamond M.S. Shared and distinct functions of type I and type III interferons. Immunity. 2019; 50 (4): 907–923. doi:10.1016/j.immuni.2019.03.025

33. Lee S., Baldridge M.T. Interferon-lambda: a potent regulator of intestinal viral infections. Front. Immunol. 2017; 8: 749. doi: 10.3389/fimmu.2017.00749

34. Lee S.J., Lee E.J., Kim S.K., Jeong P., Cho Y.H., Yun S.J., Kim S., Kim G.Y., Choi Y.H., Cha E.J., Kim W.J., Moon S.K. Identification of pro-inflammatory cytokines associated with muscle invasive bladder cancer; the roles of IL-5, IL-20, and IL-28A. PLoS One. 2012; 7 (9): e40267. doi: 10.1371/journal.pone.0040267

35. Li L., Fu F., Xue M., Chen W., Liu J., Shi H., Chen J., Bu Z., Feng L., Liu P. IFN-lambda preferably inhibits PEDV infection of porcine intestinal epithelial cells compared with IFN-alpha. Antiviral Res. 2017; 140: 76–82. doi: 10.1016/j.antiviral.2017.01.012

36. Li Z., Lu X., Zhu Y., Cheng P., Liu S., Zhang Y., Tang J., Yang S., Zhou L. Lambda-interferons inhibit herpes simplex virus type 2 replication in human cervical epithelial cells by activating the JAK/STAT pathway. Jpn. J. Infec. Dis. 2017; 70 (4): 416–422. doi:10.7883/yoken.JJID.2016.465

37. Luo Q., Liu Y., Liu S., Yin Y., Xu B., Cao J. Interleukin 28 is a potential therapeutic target for sepsis. Clin. Immunol. 2019; 205: 29–34. doi: 10.1016/j.clim.2019.05.012

38. Mordstein M., Kochs G., Dumoutier L., Renauld J.C., Paludan S.R., Klucher K., Staeheli P. Interferon-lambda contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses. PLoS Pathog. 2008; 4. e1000151. doi: 10.1371/journal.ppat.1000151

39. Mordstein M., Neugebauer E., Ditt V., Jessen B., Rieger T., Falcone V., Sorgeloos F., Ehl S., Mayer D., Kochs G. Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections. J. Virol. 2010; 84: 5670–5677. doi:10.1128/JVI.00272-10

40. Mucha J., Majchrzak K., Taciak B., Hellmén E., Król M. MDSCs mediate angiogenesis and predispose canine mammary tumor cells for metastasis via IL-28/ IL-28RA (IFN-λ) signaling. PLoS ONE. 2014; 9 (7): e103249. doi: 10.1371/journal.pone.0103249

41. Muir A.J., Arora S., Everson G., Flisiak R., George J., Ghalib R., Gordon S.C., Gray T., Greenbloom S., Hassanein T., Hillson J., Horga M.A., Jacobson I.M., Jeffers L., Kowdley K.V., Lawitz E., Lueth S., Rodriguez-Torres M., Rustgi V., Shemanski L., Shiffman M.L., Srinivasan S., Vargas H.E., Vierling J.M., Xu D., Lopez-Talavera J.C., Zeuzem S. EMERGE study group. A randomized phase 2b study of peginterferon lambda-1a for the treatment of chronic HCV infection. J. Hepatol. 2014; 61 (6). 1238–1246. doi: 10.1016/j.jhep.2014.07.022

42. Nelson M., Rubio R., Lazzarin A., Romanova S., Luetkemeyer A., Conway B., Molina J.M., Xu D., Srinivasan S., Portsmouth S. Safety and efficacy of pegylated interferon lambda, ribavirin, and daclatasvir in HCV and HIV-coinfected patients. J. Interferon Cytokine Res. 2017; 37 (3): 103–111. doi:10.1089/jir.2016.0082

43. Nice T.J., Baldridge M.T., McCune B.T., Norman J.M., Lazear H.M., Artyomov M., Diamond M.S., Virgin H.W. Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity. Science. 2015; 347: 269–273. doi: 10.1126/science.1258100

44. O’Brien T.R., Young H.A., Donnelly R.P., Prokunina-Olsson L. Meeting overview: interferon lambda-disease impact and therapeutic potential. J. Interferon Cytokine Res. 2019. 39 (10): 586–591. doi:10.1089/jir.2019.0018

45. Oke V., Brauner S., Larsson A., Gustafsson J., Zickert A., Gunnarsson I., Svenungsson E. IFN-λ1 with Th17 axis cytokines and IFN-α define different subsets in systemic lupus erythematosus (SLE). Arthritis Res. Ther. 2017; 19 (1): 139–151. doi: 10.1186/s13075-0171344-7

46. Phillips S., Mistry S., Riva A., Cooksley H., Hadzhiolova-Lebeau T., Plavova S., Katzarov K., Simonova M., Zeuzem S., Woffendin C., Chen P.J., Peng C.Y., Chang T.T., Lueth S., de Knegt R., Choi M.S., Wedemeyer H., Dao M., Kim C.W., Chu H.C., Wind-Rotolo M., Williams R., Cooney E., Chokshi S. Peg-interferon lambda treatment induces robust innate and adaptive immunity in chronic hepatitis b patients. Front. Immunol. 2017; 8: 621. doi: 10.3389/fimmu.2017.00621

47. Planet P.J., Parker D., Cohen T.S., Smith H., Leon J.D., Ryan C., Hammer T.J., Fierer N., Chen E.I., Prince A.S. Lambda interferon restructures the nasal microbiome and increases susceptibility to Staphylococcus aureus superinfection. MBio. 2016; 7 (1): e01939-15. doi: 10.1128/mBio.01939-15

48. Pott J., Mahlakoiv T., Mordstein M., Duerr C.U., Michiels T., Stockinger S., Staeheli P., Hornef M.W. IFN-lambda determines the intestinal epithelial antiviral host defense. Proc. Natl. Acad. Sci. USA. 2011; 108 (19): 7944–7949. doi: 10.1073/pnas.1100552108

49. Rich H.E., McCourt C.C., Zheng W.Q., McHugh K.J., Robinson K.M., Wang J., Alcorn J.F. Interferon lambda inhibits bacterial uptake during influenza superinfection. Infect. Immun. 2019. 87 (5): e00114–19. doi: 10.1128/IAI.00114-19

50. Rivera A. Interferon lambda’s new role as regulator of neutrophil function. J. Interferon Cytokine Res. 2019. 39 (10): 609–617. doi: 10.1089/jir.2019.0036

51. Rocha-Pereira J., Jacobs S., Noppen S., Verbeken E., Michiels T., Neyts J. Interferon lambda (IFN-λ) efficiently blocks norovirus transmission in a mouse model. Antiviral Res. 2018; 149: 7–15. doi:10.1016/j.antiviral.2017

52. Sauerhering L., Müller H., Behner L., Elvert M., Fehling S.K., Strecker T., Maisner A. Variability of interferon-λ induction and antiviral activity in Nipah virus infected differentiated human bronchial epithelial cells of two human donors. J. Gen. Virol. 2017; 98 (10): 2447–2453. doi: 10.1099/jgv.0.000934

53. Sheppard P.O., Fox B.A., Klucher K.M., Taft D.W., Kindsvogel W.R. Cytokine protein family. Patent WO2002086087 US; Publ. 31.10.2002.

54. Sheppard P., Kindsvogel W., Xu W., Henderson K., Schlutsmeyer S., Whitmore T.E., Kuestner R., Garrigues U., Birks C., Roraback J., Ostrander C., Dong D., Shin J., Presnell S., Fox B., Haldeman B., Cooper E., Taft D., Gilbert T., Grant F.J., Tackett M., Krivan W., Mcknight G., Clegg C., Foster D., Klucher K.M. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 2003; 4: 63–68. doi: 10.1038/ni873

55. Swamy M., Abeler-Dörner L., Chettle J., Mahlakõiv T., Goubau D., Chakravarty P., Ramsay G., Reis E., Sousa C., Staeheli P., Blacklaws B.A., Heeney J.L., Hayday A.C. Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance. Nat. Commun. 2015; 6: 7090. doi: 10.1038/ncomms8090

56. Taniguchi M., Yanagi Y., Ohno S. Both type I and type III interferons are required to restrict measles virus growth in lung epithelial cells. Arch. Virol. 2019; 164 (2): 439–446. doi: 10.1007/s00705-018-4087-0

57. Wang X., Wang H., Liu M.Q., Li J.L., Zhou R.H., Zhou Y., Wang Y.Z., Zhou W., Ho W.Z. IFN-λ inhibits drug-resistant HIV infection of macrophages. Front. Immunol. 2017; 8: 210. doi: 10.3389/fimmu.2017.00210

58. Wieland S.F., Heim M.H. The IFN-λ pony express. Nat. Immunol. 2019; 20 (5): 522–524. doi:10.1038/s41590-019-0362-9

59. Wolk K., Witte K., Witte E., Raftery M., Kokolakis G., Philipp S., Schonrich G., Warszawska K., Kirsch S., Prosch S., Sterry W., Volk H.D., Sabat R. IL-29 is produced by T(H)17 cells and mediates the cutaneous antiviral competence in psoriasis. Sci. Transl. Med. 2013; 5 (204): 204–129. doi: 10.1126/scitranslmed.3006245

60. Won J., Gil C.H., Jo A., Kim H.J. Inhaled delivery of Interferon-lambda restricts epithelial-derived Th2 inflammation in allergic asthma. Cytokine. 2019; 119: 32–36. doi: 10.1016/j.cyto.2019.02.010

61. Wongthida P., Diaz R.M., Galivo F., Kottke T., Thompson J., Pulido J., Pavelko K., Pease L., Melcher A., Vile R. Type III IFN interleukin-28 mediates the antitumor efficacy of oncolytic virus VSV in immunecompetent mouse models of cancer. Cancer Res. 2010; 70 (11): 4539–4549. doi: 10.1158/0008-5472.CAN-094658

62. Yang K., Puel A., Zhang S., Eidenschenk C., Ku C.L., Casrouge A., Picard C., von Bernuth H., Senechal B., Plancoulaine S., Al-Hajjar S., Al-Ghonaium A., Maródi L., Davidson D., Speert D., Roifman C., Garty B.Z., Ozinsky A., Barrat F.J., Coffman R.L., Miller R.L., Li X., Lebon P., Rodriguez-Gallego C., Chapel H., Geissmann F., Jouanguy E., Casanova J.L. Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/ beta and -lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity. 2005; 23 (5): 465–478. doi: 10.1016/j.immuni.2005.09.016

63. Ye L., Schnepf D., Becker J., Ebert K., Tanriver Y., Bernasconi V., Gad H.H., Hartmann R., Lycke N., Staeheli P. Interferon-λ enhances adaptive mucosal immunity by boosting release of thymic stromal lymphopoietin. Nat. Immunol. 2019; 20 (5): 593–601. doi: 10.1038/s41590-019-0345-x

64. Yu D., Zhao M., Dong L., Zhao L., Zou M., Sun H., Zhang M., Liu H., Zou Z. Design and evaluation of novel interferon lambda analogs with enhanced antiviral activity and improved drug attributes . Drug. Des. Devel. Ther. 2016; 10: 163–182. doi: 10.2147/DDDT.S91455


Review

For citations:


Kikhtenko N.A., Oleynik L.A., Makarov V.K., Nagorskaya E.P., Madonov P.G. Interferons lambda – therapeutic application. Сибирский научный медицинский журнал. 2020;40(2):15-23. (In Russ.) https://doi.org/10.15372/SSMJ20200202

Views: 2759


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)