Preview

Сибирский научный медицинский журнал

Advanced search

Platelet microvesicles and their role in providing hemostatic capacity (literature review)

https://doi.org/10.15372/SSMJ20200201

Abstract

In recent years the role of microvesicles in endocrine system transmission, in providing cellular connectivity, in transportation of proteins and nucleic acids from one cell to another, in angiogenesis regulation, in inflammatory reactions and in dissemination of tumors is actively studied. This article reviews the mechanisms of microvesicle formation, the structure of microvesicles and their potential value as biomarkers. Among all essential reactions involving microvesicles one thing especially stands out: their direct participation in providing hemostatic reactions for bleeding control in case of a solution of continuity in blood vessels due to different reasons. Platelet microvesicles play an important role in this process, and it has been proved by several experimental and clinical studies. In this review we evaluate prospects for clinical use of one of modern blood components – cryoprecipitate – as the source of platelet microvesicles.

About the Authors

A. P. Momot
Altai Branch of National Research Center for Hematology of Minzdrav of Russia
Russian Federation

Andrey P. Momot, doctor of medical sciences, professor

656045, Barnaul, Lyapidevskogo str., 1, bldg. 2



N. O. Tsarigorodtseva
Altai State Medical University of Minzdrav of Russia
Russian Federation

Natalia O. Tsarigorodtseva

656038, Barnaul, Lenina av., 40



D. V. Fedorov
Altai State Medical University of Minzdrav of Russia
Russian Federation

Dmitry V. Fedorov, doctor of medical sciences, professor

656038, Barnaul, Lenina av., 40



K. M. Bishevski
Altai State Medical University of Minzdrav of Russia
Russian Federation

Konstantin M. Bishevski, candidate of medical sciences

656038, Barnaul, Lenina av., 40



N. V. Vostrikova
Altai State Medical University of Minzdrav of Russia
Russian Federation

Natalia V. Vostrikova, candidate of medical sciences

656038, Barnaul, Lenina av., 40



E. E. Klimova
Altai State Medical University of Minzdrav of Russia
Russian Federation

Elena E. Klimova, candidate of medical sciences

656038, Barnaul, Lenina av., 40



References

1. Gomzikova M.O., Gayfullina R.F., Mustafin I.G., Chernov V.M., Miftakhova Z.R., Galyavich A.S., Rizvanov A.A. Membrane microvesicles: biological properties and involvement in pathogenesis of diseases. Kletochnaya transplantologiya i tkanevaya inzheneriya = Cellular Transplantation and Tissue Engineering. 2013; 8 (1): 6–11. [In Russian].

2. Zubairov D.M., Zubairova L.D. Microvesicles in blood. Functions and their role in thrombus formation. Moscow: GEOTAR-Media, 2009. 168 p. [In Russian].

3. Kubatiev A.A., Borovaya T.G., Zhukovitskaya V.G., Adreevskaya S.G., Shevlyagina N.V. Platelet microparticles: formation and properties. Patogenez = Pathogenesis. 2017; 15 (2): 4–13. [In Russian]. doi: 10.25557/GM.2017.2.7296

4. Paltsyn A.A. Platelet microparticles. Patologicheskaya fiziologiya i eksperimental’naya terapiya = Pathological Physiology and Experimental Therapy. 2017; 61 (1): 99–105. [In Russian]. doi: 10.25557/00312991.2017.01.99-105

5. Panteleev M.A., Abaeva A.A., Balandina A.N., Belyaev A.V., Nechipurenko D.Yu., Obydennyj S.I., Sveshnikova A.N., Shibeko A.M., Ataullakhanov F.I. Extracellular vesicles of blood plasma: composition, origin, properties. Biologicheskie membrany = Biological Membranes. 2017; 34 (3): 155–161. [In Russian]. doi: 10.7868/S0233475517030069

6. Titov V.N. Microparticles of blood plasma, microvesicles, exosomes, corpuscles of apoptosis and macrophages Kupffer cells in liver – late in the phylogenesis system for the implementation of the biological function of endoecology (lecture). Klinicheskaya laboratornaya diagnostika = Clinical Laboratory Diagnostics. 2011; (11): 29–39. [In Russian].

7. Alving B.M., Reid T.J., Fratantoni J.C., Finlayson J.S. Frozen platelets and platelet substitutes in transfusion medicine. Transfusion. 1997; 37: 866–876. doi: 10.1046/j.1537-2995.1997.37897424413.x

8. American Association of Blood Banks Technical Manual. Ed. 19. Bethesda: American Association of Blood Banks, 2017.

9. Anthwi-Baffour S., Adjei J., Aryeh C., Kyeremeh R., Kyri F., Seidu M.A. Understanding the biosynthesis of platelets-derived extracellular vesicles. Immun. Inflamm. Dis. 2015; 3 (3): 133–140. doi: 10.1002/iid3.66

10. Ardoin S.P., Shanahan J.C., Pisetsky D.C. The role of microparticles in inflammation and thrombosis. Scand. J. Immunol. 2007; 66: 159–165.

11. Baj-Krzyworzeka M., Majka M., Pratico D., Ratajczak J., Vilaire G., Kijowski J., Reca R., Janowska-Wieczorek A., Ratajczak M.Z. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxix of hematopoietic cells. Exp. Hematol. 2002; 30: 450–459.

12. Biro E., Akkerman J.W., Hoek F.J., Gorter G., Pronk L.M., Sturk A., Nieuwland R. The phospholipid composition and cholesterol content of platelet-derived microparticles: a comparison with platelet membrane fractions. J. Thromb. Haemost. 2005; 3: 2754–2763. doi: 10.1111/j.1538-7836.2005.01646.x

13. Blajchman M.A. Substitutes and alternatives to platelet transfusions in thrombocytopenic patients. J. Thromb. Haemost. 2003; 1: 1637–1641.

14. Boudreau L.H., Duchez A.-C., Cloutier N., Soulet D., Martin N., Bollinger J., Paré A., Rousseau M., Naika G.S., Lévesque T., Laflamme C., Marcoux G., Lambeau G., Farndale R.W., Pouliot M., Hamzeh-Cognasse H., Cognasse F., Garraud O., Nigrovic P.A., Guderley H., Lacroix S., Thibault L., Semple J.W., Gelb M.H., Boilard E. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014; 124 (14): 2173–2183. doi: 10.1182/blood-2014-05-573543

15. Burnier L., Fontana P., Kwak B.R., AngelilloScherrer A. Cell-derived microparticles in haemostasis and vascular medicine. Thromb. Haemost. 2009; 101 (3): 439–451. doi: 10.1160/TH08-08-0521

16. Callum J.L., Karkouti K., Lin Y. Cryoprecipitate: the current state of knowledge. Transfus. Med. Rev. 2009; 23 (3): 177–188. doi: 10.1016/j.tmrv.2009.03.001

17. Chao F.C., Kim B.K., Houranieh A.M., Liang F.H., Konrad M.W., Swisher S.N., Tullis J.L. Infusible platelet membrane microvesicles: a potential transfusion substitute for platelets. Transfusion. 1996; 36: 536–542. doi: 10.1046/j.1537-2995.1996.36696269513.x

18. Coumans F.A.W., Brisson A.R., Buzas E.I., Dignat-George F., Drees E.E.E., El-Andaloussi S., Emanueli C., Gasecka A., Hendrix A., Hill A.F., Lacroix R., Lee Y., van Leeuwen T.G., Mackman N., Mäger I., Nolan J.P., van der Pol E., Pegtel D.M., Sahoo S., Siljander P.R.M., Sturk G., de Wever O., Nieuwland R. Methodological guidelines to study extracellular vesicles. Circ. Res. 2017; 120 (10): 1632–1648. doi: 10.1161/CIRCRESAHA.117.309417

19. Curry N., Raja A., Beavis J., Stanworth S., Harrison P. Levels of procoagulant microvesicles are elevated after traumatic injury and platelet microvesicles are negatively correlated with mortality. J. Extracell. Vesicles. 2014; 3: 25625. doi: 10.3402/jev.v3.25625

20. Curtis A.M., Edelberg J., Jonas R., Rogers W.T., Moore J.S., Syed W., Mohler E.R. 3rd. Endothelial microparticles: sophisticated vesicles modulating vascular function. Vasc. Med. 2013; 18 (4): 204–214. doi: 10.1177/1358863X13499773

21. Daleke D.L. Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid. Res. 2003; 44 (2): 233–242. doi: 10.1194/jlr.R200019-JLR200

22. Dean W.L., Lee M.J., Cummins T.D., Schultz D.J., Powell D.W. Proteomic and functional characterization of platelet microparticle size classes. J. Thromb. Haemost. 2009; 102: 711–718. doi: 10.1160/TH09-04-243

23. Diamant M., Tushuizen M.E., Sturk A., Nieuwland R. Cellular microparticles: new players in the field of vascular disease? Eur. J. Clin. Invest. 2004; 34 (6): 392–401. doi: 10.1111/j.1365-2362.2004.01355.x

24. Erdbrügger U., Lannigan J. Analytical challenges of extracellular vesicle detection: A comparison of different techniques. Cytometry A. 2016; 89 (2): 123–134. doi: 10.1002/cyto.a.22795

25. Faille D., El-Assaad F., Mitchell A.J., Alessi M.C., Chimini G., Fusai T., Grau G.E., Combes V. Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J. Cell. Mol. Med. 2012; 16 (8): 1731–1738. doi: 10.1111/j.15824934.2011.01434.x

26. George J.N., Pickett E.B., Heinz R. Platelet membrane microparticles in blood bank fresh frozen plasma and cryoprecipitate. Blood. 1986; 68 (1): 307–309.

27. Goubran H.A., Burnouf T., Stakiw J., Seghatchian J. Platelet microparticle: a sensitive physiological «fine tuning» balancing factor in health and disease. Transfus. Apher. Sci. 2015; 52 (1): 12–18. doi:10.1016/j.transci.2014.12.015

28. Guidelines for the Blood Transfusion Services in the United Kingdom. Chapter 7: Specifications for Blood Components. 8th ed. 2013. URL: https://www.transfusionguidelines.org/red-book/chapter-7-specifications-for-blood-components. Accessed February 2, 2020.

29. Hargett L.A., Bauer N.N. On the origin of microparticles: From «platelet dust» to mediators of intercellular communication. Pulm. Circ. 2013; 3 (2): 329–340. doi: 10.4103/2045-8932.114760

30. Italiano J.E. Jr., Mairuhu T.A., Flaumenhaft R. Clinical Relevance of Microparticles from Platelets and Megakaryocytes. Curr. Opin. Hematol. 2010; 17 (6): 578–584. doi: 10.1097/MOH.0b013e32833e77ee

31. Janiszewski M., Do Carmo A.O., Pedro M.A., Silva E., Knobel E., Laurindo F.R. Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: A novel vascular redox pathway. Crit. Care Med. 2004; 32 (3): 818–825. doi:10.1097/01.ccm.0000114829.17746.19

32. Kim H.K., Song K.S., Chung J.H., Lee K.R., Lee S.N. Platelet microparticles induce angiogenesis in vitro. Br. J. Haematol. 2004; 124 (3): 376–384. doi:10.1046/j.1365-2141.2003.04773.x

33. Lee D.H., Blajchman M.A. Novel treatment modalities: New platelet preparations and substitutes. Br. J. Haematol. 2001; 114: 496–505. doi: 10.1046/j.13652141.2001.03004.x

34. Manno S., Takakuwa Y., Toti F. Formation of procoagulant microparticles and properties. Thromb. Res. 2010; 125 (Suppl. 1): 46–48. doi: 10.1016/j.thromres.2010.01.036

35. Marcoux G., Duchez A.C., Rousseau M., Levesque T., Boudreau L.H., Thibault L., Boilard E. Microparticle and mitochondrial release during extended storage of different types of platelet concentrates. Platelets. 2016; 29: 1–9. doi: 10.1080/09537104.2016.1218455

36. Meziani F., Xavier Delabranche X., Asfar P., Toti F. Bench-to-bedside review: Circulating microparticles – a new player in sepsis? Crit. Care. 2010; 14 (5): 236. doi: 10.1186/cc9231

37. McGinn C.M., MacDonell B.F., Shan C.X., Wallace R., Cummins P.M., Murphy R.P. Microparticles: a pivotal nexus in vascular homeostasis and disease. Curr. Clin. Pharmacol. 2016; 11 (1): 28–42. doi:10.2174/1574884711666160122093527

38. McVerry B.A., Machin S.J. Incidence of alloimmunization and allergic reactions to cryoprecipitate in haemophilia. Vox Sang. 1979; 36 (2): 77–80. doi: 10.1111/j.1423-0410.1979.tb04402.x

39. Morrell C.N. Immunomodulatory mediators in platelet transfusion reactions. Hematology Am. Soc. Hematol. Educ. Program. 2011; 2011: 470–474. doi:10.1182/asheducation-2011.

40. Muralidharen-Chari V., Sedgwick A., D’SouzaSchorey C. Microvesicles: mediators of extracellular communication during cancer progression. J. Cell Sci. 2010; 123: 1603–1611. doi: 10.1242/jcs.064386.

41. Nasiri S. Infusible platelet membrane as a platelet substitute for transfusion: an overview. Blood Transfus. 2013; 11 (3): 337–342. doi: 10.2450/2013.0209-12

42. Nasiri S., Heidari M., Rivandi S. Evaluation of hemostatic effectiveness of infusible platelet membrane in rabbits as a potential substitute for platelet transfusion. Journal of Drug Delivery and Therapeutics. 2012; 2: 282. doi: 10.22270/jddt.v2i5.282

43. Nasiri S., Heidari M., Rivandi S. Infusible platelet membranes improve hemostasis: studies with two different injection doses. International Journal of Pharmaceutical Sciences and Research. 2012; 3: 48954898. doi: 10.13040/IJPSR.0975-8232.3(12).4895-98

44. O’Brien J.R. The platelet-like activity of serum. Br. J. Haematol. 1955; 1 (2): 223–228.

45. Pool J.G., Gershgold E.J., Pappenhagen A.R. High-potency antihaemophilic factor concentrate prepared from cryoglobulin precipitate. Nature. 1964; 203:312. doi: 10.1038/203312a0

46. Prokopi M., Pula G., Mayr U., Devue C., Gallagher J., Xiao Q., Boulanger C.M., Westwood N., Urbich C., Willeit J., Steiner M., Breus J., Xu Q., Kiechl S., Mayr M. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell culture. Blood. 2009; 114 (3): 723–732. doi: 10.1182/blood-2009-02-205930

47. Sinauridze E.I., Kireev D.A., Popenko N.Y., Pichugin A.V., Panteleev M.A., Krymskaya O.V., Ataullakhanov F.I. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb. Haemost. 2007; 97 (3): 425–434.

48. Vostal J.G., Reid T.J., Mondoro T.H. Summary of a workshop on in vivo efficacy of transfused platelet components and platelet substitutes. Transfusion. 2000; 40 (6): 742–750. doi: 10.1046/j.15372995.2000.40060742.x

49. Westerman M., Porter J.B. Red blood cell-derived microparticles: An overview. Blood Cells Mol. Dis. 2016; 59: 134–139. doi: 10.1016/j.bcmd.2016.04.003

50. Wolf P. The nature and significance of platelet products in human plasma. Br. J. Haematol. 1967; 13 (3): 269–288. doi: 10.1111/j.1365-2141.1967.tb08741.x

51. Wong H., Curry N. Cryoprecipitate transfusion: current perspectives. International Journal of Clinical Transfusion Medicine. 2016; 4: 89–97. doi: 0.2147/IJCTM.S99042

52. Yang L., Stanworth S., Baglin T. Cryoprecipitate: an outmoded treatment? Transfus. Med. 2012; 22 (5): 315–320. doi: 10.1111/j.1365-3148.2012.01181.x

53. Zaldivia M.T.K., McFadyen J.D., Lim B., Wang X., Peter K. Platelet-derived microvesicles in cardiovascular diseases. Front. Cardiovasc. Med. 2017;(4): 74. doi: 10.3389/fcvm.2017.00074


Review

For citations:


Momot A.P., Tsarigorodtseva N.O., Fedorov D.V., Bishevski K.M., Vostrikova N.V., Klimova E.E. Platelet microvesicles and their role in providing hemostatic capacity (literature review). Сибирский научный медицинский журнал. 2020;40(2):4-14. (In Russ.) https://doi.org/10.15372/SSMJ20200201

Views: 716


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)