GLAUCOMA PROGRESSION. IMPACT OF RISK FACTORS ON THE DISEASE
https://doi.org/10.15372/SSMJ20200111
Abstract
The aim of the study is to assess the effect of systemic and local risk factors on the rate of glaucoma progression, the specificity and informative nature of ophthalmological studies for assessment of the rate of glaucoma progression.
Material and methods. A retrospective analysis of the medical case histories and outpatient charts of 217 patients (268 eyes) for the period from 2014 to 2017 was conducted. The patients with primary open-angle glaucoma having at least 5 Humphrey field-of-view (24-2) studies and optic coherence tomography of the optic nerve disk and retina with a guided progression analysis (GPA) function (SD-OCT) were included in the study. The patients were divided into 2 groups: with rapid progression (more than 1 dB per year, 144 eyes (103 patients)) and slow progression (less than 1 dB per year, 124 eyes (114 patients)). The data of standard ophthalmological methods of investigation (visometry, ophthalmoscopy, biomicroscopy, measurement of intraocular pressure (IOP) according to Maklakov) were additionally analyzed. Demographic and clinical data were assessed: gender, age, cornea central thickness, refraction, IOP, glucocorticosteroid intake, cardiovascular diseases presence, arterial hypertension, arterial hypotension, local hypotensive therapy.
Results and discussion. The analysis revealed the main risk factors in glaucoma progression, which include age, cardiovascular diseases presence, high initial IOP values, pronounced functional changes in the
visual fields (lower mean deviation), pseudoexfoliation syndrome.
About the Authors
A. Zh. FursovaRussian Federation
doctor of medical sciences
630008, Novosibirsk, Nemirovich-Danchenko str., 130
630091, Novosibirsk, Krasny av., 52
N. V. Litvinova
Russian Federation
630008, Novosibirsk, Nemirovich-Danchenko str., 130
S. F. Kraeva
Russian Federation
630008, Novosibirsk, Nemirovich-Danchenko str., 130
N. L. Ivanova
Russian Federation
630008, Novosibirsk, Nemirovich-Danchenko str., 130
O. G. Gusarevich
Russian Federation
doctor of medical sciences, professor
630008, Novosibirsk, Nemirovich-Danchenko str., 130
630091, Novosibirsk, Krasny av., 52
References
1. Spry P.G., Johnson C.A., McKendrick A.M., Turpin A. Variability components of standard automated perimetry and frequency doubling technology perimetry. Invest. Ophthalmol. Vis. Sci. 2001; 42 (6): 1404–1410.
2. Abe R.Y., Diniz-Filho A., Zangwill L.M., Gracitelli C.P., Marvasti A.H., Weinreb R.N., Baig S., Medeiros F.A. The relative odds of progressing by structural and functional tests in glaucoma. Invest. Ophthalmol. Vis. Sci. 2016; 57 (9): 421–428. doi: 10.1167/iovs.15-18940
3. Aptel F., Bron A.M., Lachkar Y., Schweitzer C. Change in visual field progression following treatment escalation in primary open-angle glaucoma. J. Glaucoma. 2017; 26 (10): 875–880. doi: 10.1097/IJG.0000000000000748
4. Terminology and guidelines for glaucoma. Savona: PubliComm, 2014. 156 p.
5. Blumberg D., Skaat A., Liebmann J.M. Emerging risk factors for glaucoma onset and progression. Prog. Brain Res. 2015; 221: 81–101. doi: 10.1016/bs.pbr.2015.04.007
6. The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration. Am. J. Ophthalmol. 2000; 130 (4): 429–440. doi: 10.1016/s0002-9394(00)00538-9
7. Perdicchi A., Abdolrahimzadeh S., Cutini A., Ciarnella A., Scuderi G.L. Evaluation of the progression of visual field damage in patients suffering from early manifest glaucoma. Clin. Ophthalmol. 2016; 10: 1647–1651. doi: 10.2147/OPTH.S113995
8. Weinreb R.N., Aung T., Medeiros F.A. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014; 311 (18): 1901. doi: 10.1001/jama.2014.3192
9. De Moraes C.G., Liebmann J.M., Levin L.A. Detection and measurement of clinically meaningful visual field progression in clinical trials for glaucoma. Prog. Retin. Eye Res. 2017; 56: 107–147. doi: 10.1016/j.preteyeres.2016.10.001
10. Yu M., Lin C., Weinreb R.N., Lai G., Chiu V., Leung C.K. Risk of visual field progression in glaucoma patients with progressive retinal nerve fiber layer thinning. Ophthalmology. 2016; 123 (6): 1201–1210. doi: 10.1016/j.ophtha.2016.02.017
11. De Moraes C.G., Liebmann J.M., Greenfield D.S., Gardiner S.K., Ritch R., Krupin T. Risk factors for visual field progression in the low-pressure glaucoma treatment study. Am. J. Ophthalmol. 2012; 154 (4): 702–711. doi: 10.1016/j.ajo.2012.04.015
12. De Moraes C.G., Juthani V.J., Liebmann J.M., Teng C.C., Tello C., Susanna R.Jr., Ritch R. Risk factors for visual field progression in treated glaucoma. Arch. Ophthalmol. 2011; 129 (5): 562–569. doi: 10.1001/archophthalmol.2011.72
13. Gardiner S.K., Crabb D.P. Frequency of testing for detecting visual field progression. Br. J. Ophthalmol. 2002; 86 (5): 560–564. doi: 10.1136/bjo.86.5.560
14. Heijl A., Buchholz P., Norrgren G., Bengtsson B. Rates of visual field progression in clinical glaucoma care. Acta Ophthalmol. 2013; 91 (5): 406–412. doi: 10.1111/j.1755-3768.2012.02492.x
15. Holmin C., Krakau C. Regression analysis of the central visual field in chronic glaucoma cases. Acta Ophthalmol. 2009; 60 (2): 267–274. doi: 10.1111/j.1755-3768.1982.tb08381.x
16. King A.J., Fernie G., Azuara-Blanco A., Burr J.M., Garway-Heath T., Sparrow J.M., Vale L., Hudson J., MacLennan G., McDonald A., Barton K., Norrie J. Treatment of advanced glaucoma study: a multicentre randomised controlled trial comparing primary medical treatment with primary trabeculectomy for people with newly diagnosed advanced glaucomastudy protocol. Br. J. Ophthalmol. 2018; 102 (7): 922–928. doi: 10.1136/bjophthalmol-2017-310902
17. Kourkoutas D., Buys Y.M., Flanagan J.G., Karamaounas N., Georgopoulos G., Iliakis E. Moschos M.M., Trope G.E.. Clinical significance of optic disc progression by topographic change analysis maps in glaucoma: an 8-year follow-up study. J. Ophthalmol. 2014: 1–12. doi: 10.1155/2014/987389
18. Leung C.K., Yu M., Weinreb R.N., Ye C., Liu S., Lai G., Lam D.S. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. Ophthalmology. 2012; 119 (4): 731–737. doi: 10.1016/j.ophtha.2011.10.010
19. Memarzadeh F., Ying-Lai M., Chung J., Azen S., Varma R. Blood pressure, perfusion pressure, and open-angle glaucoma: the Los Angeles Latino Eye Study. Invest. Ophthalmol. Vis. Sci. 2010; 51 (6): 2872–2878. doi: 10.1167/iovs.08-2956
20. Nouri-Mahdavi K., Zarei R., Caprioli J. Influence of visual field testing frequency on detection of glaucoma progression with trend analyses. Arch. Ophthalmol. 2011; 129 (12): 1521–1528. doi: 10.1001/archophthalmol.2011.224
21. Peters D., Bengtsson B., Heijl A. Factors associated with lifetime risk of open-angle glaucoma blindness. Acta Ophthalmol. 2014; 92 (5): 421-432. doi: 10.1111/aos.12203
22. Saunders L.J., Russell R.A., Kirwan J.F., McNaught A.L., Crabb D.P. Examining visual field loss in patients in glaucoma clinics during their predicted remaining lifetime. Invest. Ophthalmol. Vis. Sci. 2014; 55 (1): 102–109. doi: 10.1167/iovs.13-13006
23. Spry P.G., Johnson C.A., McKendrick A.M., Turpin A. Variability components of standard automated perimetry and frequency doubling technology perimetry. Invest. Ophthalmol. Vis. Sci. 2001; 42 (6): 1404–1410.
24. Terminology and guidelines for glaucoma. Savona: PubliComm, 2014. 156 p.
25. The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration. Am. J. Ophthalmol. 2000; 130 (4): 429–440. doi: 10.1016/s0002-9394(00)00538-9
26. Weinreb R.N., Aung T., Medeiros F.A. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014; 311 (18): 1901. doi: 10.1001/jama.2014.3192
27. Yu M., Lin C., Weinreb R.N., Lai G., Chiu V., Leung C.K. Risk of visual field progression in glaucoma patients with progressive retinal nerve fiber layer thinning. Ophthalmology. 2016; 123 (6): 1201–1210. doi: 10.1016/j.ophtha.2016.02.017