Preview

Сибирский научный медицинский журнал

Advanced search

Production and analysis of the biological properties of recombinant human granulocyte colony stimulating factor chimeric form

https://doi.org/10.15372/SSMJ20190605

Abstract

The aim of this work was to design and study biological properties of the recombinant human granulocyte colony stimulating factor (G-CSF), «linked» to apolipoprotein A-I (apoA-I) by a peptide linker, for obtaining in perspective a prolong form of the drug based on this cytokine.

Material and methods. The nucleotide sequences of the genes encoding G-CSF and apoA-I were designed and optimized for expression in Pichia pastoris yeast using several computer programs. The assembly of the gene coding for the G-CSF-apoA-I chimeric cytokine, its cloning in the pPICZa-A vector, and expression in P. pastoris cells were performed using standard genetic engineering methods. Purification of the chimeric cytokine was carried out by two-stage ion-exchange chromatography. The biological activity of the chimera was determined in vitro on rat and human bone marrow cells (BMC) using flow cytometry, cell cycle analysis and myelograms.

Results. A recombinant P pastoris X-33 yeast strain producing a chimeric cytokine containing the amino acid sequence G-CSF from the N-terminus, and mature human apoA-I from the C-terminus was constructed. In experiments on BMC of rat, it was shown that G-CSF-apoA-I increases the number of granulocytes in 1.8-2 times less compared with G-CSF. At the same time, the chimeric cytokine maintained the viability of monocytic and lymphocytic cells. Unlike G-CSF, the chimera increased the number of blast cells and normalized neutrophil segmentation, reducing the number of anomalies 1.5 times more efficiently.

Conclusion. A new chimeric cytokine G-CSF-apoA-I was constructed, exhibiting the properties of not only a colony-stimulating factor, but also a growth factor, supporting the viability of other types of BMC.

About the Authors

M. B. Pykhtina
Research Institute for Biochemistry of Federal Research Center for Fundamental and Translational Medicine; Research Institute for Lymphology of Federal Research Center Institute of Cytology and Genetics SB RAS
Russian Federation

Mariya Borisovna Pykhtina

630117, Novosibirsk, Timakov str., 2



V. P. Romanov
Research Institute for Biochemistry of Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Vladimir Pavlovich Romanov

630117, Novosibirsk, Timakov str., 2



S. M. Miroshnichenko
Research Institute for Biochemistry of Federal Research Center for Fundamental and Translational Medicine; Research Institute for Lymphology of Federal Research Center Institute of Cytology and Genetics SB RAS
Russian Federation

Svetlana Mikhaylovna Miroshnichenko

630117, Novosibirsk, Timakov str., 2



A. B. Beklemishev
Research Institute for Biochemistry of Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Anatoliy Borisovich Beklemishev - doctor of biological sciences.

630117, Novosibirsk, Timakov str., 2



References

1. Goldberg E.D., Dygay A.M., Shakhov V.P. Methods of tissue culture in hematology. Tomsk, 1992. 272 p. [In Russian].

2. Acton S., Rigotti A., Landschulz K.T., Xu S., Hobbs H.H., Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996; 271 (5248): 518-520. doi: 10.1126/science.271.5248.518

3. Bai Y., Ann D.K., Shen W.C. Recombinant granulocyte colony-stimulating factor-transferrin fusion protein as an oral myelopoietic agent. Proc. Natl. Acad. Sci. USA. 2005; 102 (20): 7292-7296. doi: 10.1073/pnas.0500062102

4. Cereghino J.L., Cregg J.M. Heterologous protein expression in the methylotrophic yeast Pichia pas-toris. FEMS Microbiol. Rev. 2000; 24 (1); 45-66. doi: 10.1111/j.1574-6976.2000.tb00532.x

5. Cox G.N., Smith D.J., Carlson S.J., Bende-le A.M., Chlipala E.A., Doherty D.H. Enhanced circulating half-life and hematopoietic properties of a human granulocyte colony-stimulating factor/immunoglobulin fusion protein. Exp. Hematol. 2004: 32 (5); 441-449. doi: 10.1016/j.exphem.2004.01.012

6. Fioravanti J., Gonzalez I., Medina-Echeverz J., Larrea E., Ardaiz N., Gonzalez Aseguinolaza G., Prieto J., Berraondo P. Anchoring interferon alpha to apoli-poprotein A-I reduces hematological toxicity while enhancing immunostimulatory properties. Hepatology. 2011; 53 (6): 1864-1873. doi: 10.1002/hep.24306

7. Garay R.P., El-Gewely R., Armstrong J.K., Gar-ratty G., Richette P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin. Drug Deliv. 2012; 9 (11): 1319-1323. doi: 10.1517/17425247.2012.720969

8. Halpern W., Riccobene T.A., Agostini H., Baker K., Stolow D., Gu M.L., Hirsch J., Mahoney A., Carrell J., Boyd E., Grzegorzewski K.J. Albugranin, a recombinant human granulocyte colony stimulating factor (GCSF) genetically fused to recombinant human albumin induces prolonged myelopoietic effects in mice and monkeys. Pharm. Res. 2002; 19 (11): 1720-1729. doi: 10.1023/a:1020917732218

9. Kim S.I., Shin D., Choi T.H., Lee J.C., Cheon G.J., Kim K.Y., Park M., Kim M. Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol. Ther. 2007; 15 (6): 1145-1152. doi: 10.1038/sj.mt.6300168

10. Kuai R., Li D., Chen Y.E., Moon J.J., Schwen-deman A. High-density lipoproteins: Nature’s multifunctional nanoparticles. ACS Nano. 2016; 10 (3): 3015-3041. doi: 10.1021/acsnano.5b07522

11. Kuwabara T., Kobayashi S., Sugiyama Y. Pharmacokinetics and pharmacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab. Rev. 1996; 28 (4): 625-658. doi: 10.3109/03602539608994020

12. Lu C.Z., Xiao B.G. G-CSF and neuroprotection: a therapeutic perspective in cerebral ischaemia. Biochem. Soc. Trans. 2006; 34 (6): 1327-1333. doi: 10.1042/BST0341327

13. Meuer K., Pitzer C., Teismann P., Kruger C., Goricke B., Laage R., Lingor P., Peters K., Schlachetzki J.C., Kobayashi K., Dietz G.P., Weber D., Ferger B., Schabitz W.R., Bach A., Schulz J.B., Bahr M., Schneider A., Weishaupt J.H. Granulocyte-colony stimulating factor is neuroprotective in a model of Parkinson’s disease. J. Neurochem. 2006; 97 (3): 675-686. doi: 10.1111/j.1471-4159.2006.03727.x

14. Prakash A., Medhi B., Chopra K. Granulocyte colony stimulating factor (GCSF) improves memory and neurobehavior in an amyloid-P induced experimental model of Alzheimer’s disease. Pharmacol. Biochem. Behav. 2013; 110: 46-57. doi: 10.1016/j.pbb.2013.05.015

15. Puchkov I.A., Kononova N.V., Bobruskin A.I., Bairamashvili D.I., Mart’ianov V.A., Shuster A.M. Recombinant granulocyte-colony stimulating factor (filgrastim): optimization of conjugation with polyethylene glycol. Bioorg. Chem. 2012; 38 (5): 545-554. doi: 10.1134/s1068162012050111

16. Viret F., Gon?alves A., Tarpin C., Chaban-non C., Viens P. G-CSF en oncologie. Bull. Cancer. 2006; 93 (5): 463-471. Viret F., Gon?alves A., Tarpin C., Chabannon C., Viens P. G-CSF in oncology. Bull. Cancer. 2006; 93 (5): 463-471. [In French].


Review

For citations:


Pykhtina M.B., Romanov V.P., Miroshnichenko S.M., Beklemishev A.B. Production and analysis of the biological properties of recombinant human granulocyte colony stimulating factor chimeric form. Сибирский научный медицинский журнал. 2019;39(6):37-45. (In Russ.) https://doi.org/10.15372/SSMJ20190605

Views: 398


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)