Preview

Сибирский научный медицинский журнал

Advanced search

Effect of urokinase gene knockout on tissue levels of biogenic amines in mice with melanoma

https://doi.org/10.15372/SSMJ20190603

Abstract

The research aim was to study the dynamics of biogenic amines in the brain, tumor and intact skin of urokinase (uPA) gene knockout mice on day 21 of the B16/F10 melanoma growth.

Material and methods. The study included male and female uPA gene knockout (-uPA, n = 38) and wild type mice (+uPA, n = 61). Melanoma was transplanted subcutaneously. Levels of biogenic amines were studied by ELISA in tissues obtained on day 21 of carcinogenesis.

Results and discussion. Intact (-uPA) mice showed an increased total content of biogenic amines: in the skin - due to noradrenaline increase by 4.8 times in males and by 4.9 times in females, histamine - by 3.6 times in males and by 1.6 times (p < 0.05) in females, serotonin - by 3.4 times in males and by 8.3 times in females; in the brain - due to noradrenaline increase by 3.5 times in males and by 3.2 times in females, dopamine by 2.1 times in males and by 2.9 times in females, while histamine content decreased. Melanoma development in (-uPA) mice was characterized by: lower levels of adrenaline with high NA concentrations and an increase in the serotonin metabolism in the brain; higher histamine concentrations in the tumor and higher serotonin levels in the skin; similar to (+uPA) mice levels of adrenaline (males) and noradrenaline in the tumor and higher levels of adrenaline in the tumor and histamine in the skin in (-uPA) females.

Conclusions. The uPA gene knockout limits the development of stress at the central regulatory level due to lower levels of A together with increasing serotoninergic mediation in the brain, as well as modulates the immune antitumor response due to higher levels of histamine in the tumor and 5 serotonin in the skin, as a result of lower monoamine oxidase activity, in mice with B16/F10 melanoma.

About the Authors

E. M. Frantsiyants
Rostov Research Institute of Oncology
Russian Federation

Elena Mikhaylovna Frantsiyants - doctor of biological sciences, professor.

344037, Rostov-on-Don, 14 line, 63, bldg. 8



I. V. Kaplieva
Rostov Research Institute of Oncology
Russian Federation

Irina Viktorovna Kaplieva - candidate of medical sciences.

344037, Rostov-on-Don, 14 line, 63, bldg. 8



E. I. Surikova
Rostov Research Institute of Oncology
Russian Federation

Ekaterina Igorevna Surikova - candidate of biological sciences.

344037, Rostov-on-Don, 14 line, 63, bldg. 8



I. V. Neskubina
Rostov Research Institute of Oncology
Russian Federation

Irina Valerievna Neskubina - candidate of biological sciences.

344037, Rostov-on-Don, 14 line, 63, bldg. 8



V. A. Bandovkina
Rostov Research Institute of Oncology
Russian Federation

Valeriya Akhtyamovna Bandovkina - candidate of biological sciences.

344037, Rostov-on-Don, 14 line, 63, bldg. 8



L. K. Trepitaki
Rostov Research Institute of Oncology
Russian Federation

Lidia Konstantinovna Trepitaki

344037, Rostov-on-Don, 14 line, 63, bldg. 8



Y. A. Pogorelova
Rostov Research Institute of Oncology
Russian Federation

Yuliya Aleksandrovna Pogorelova - candidate of biological sciences.

344037, Rostov-on-Don, 14 line, 63, bldg. 8



L. A. Nemashkalova
Rostov Research Institute of Oncology
Russian Federation
Lyudmila Anatolievna Nemashkalova344037, Rostov-on-Don, 14 line, 63, bldg. 8


References

1. Kotieva I.M., Kit O.I., Frantsiyants E.M., Ban-dovkina V.A., Kaplieva I.V., Trepitaki L.K., Cher-yarina N.D., Pogorelova Yu.A. Effect of experimental chronic pain on levels of biogenic amines in skin of mice in dynamics of B16/F10 melanoma growth. Izvestiya vysshikh uchebnykh zavedeniy Severo-Kav-kazskiy region. Estestvennyye nauki = University news. North-Caucasian region. Natural Sciences Series. 2018; 198 (1): 130-139. [In Russian].

2. Frantsiyants E.M., Kaplieva I.V., Surikova E.I., Neskubina I.V., Bandovkina V.A., Trepitaki L.K., Lesovaya N.S., Cheryarina N.D., Pogorelova Yu.A., Nemashkalova L.A. Effect of urokinase gene-knockout on growth of melanoma in experiment. Sibirskiy nauch-nyy meditsinskiy zhurnal = Siberian Scientific Medical Journal. 2019; 39 (4): 62-70. [In Russian]. doi: 10.15372/SSMJ20190408

3. Agarwala S.S., Glaspy J., O’Day S.J., Mitchell M., Gutheil J., Whitman E., Gonzalez R., Hersh E., Feun L., Belt R., Meyskens F., Hellstrand K., Wood D. Results from a randomized phase III study comparing combined treatment with histamine dihydrochloride plus interleukin-2 versus interleukin-2 alone in patients with metastatic melanoma. J. Clin. Oncol. 2002; 20: 125-133.

4. Calvani M., Pelon F., Comito G., Taddei M.L., Moretti S., Innocenti S., Chiarugi P. Norepinephrine promotes tumor microenvironment reactivity through P3-adrenoreceptors during melanoma progression. Oncotarget. 2015; 6 (7): 4615-4632. doi:10.18632/oncotarget.2652

5. Calvani M., Cavallini L., Tondo A., Spinelli V., Ricci L., Pasha A., Bruno G., Buonvicino D., Bigagli E., Vignoli M., Bianchini F., Sartiani L., Lodovici M., Semeraro R., Fontani F., de Logu F., Dal Monte M., Chiarugi P., Favre C., Filippi L. P3-Adrenoreceptors control mitochondrial dormancy in melanoma and embryonic stem cells. Oxid. Med. Cell. Longev. 2018; 2018: 816508. doi: 10.1155/2018/6816508

6. De Giorgi V, Grazzini M., Benemei S. Propranolol for off-label treatment of patients with melanoma: results from a cohort study. JAMA Oncol. 2018; 4 (2): ID e172908. doi: 10.1001/jamaoncol.2017.2908

7. Jozic I., Stojadinovic O., Kirsner R.S., Tomic-Canic M. Skin under the (spot)-light: cross-talk with the central hypothalamic-pituitary-adrenal (HPA) axis. J. Invest. Dermatol. 2015; 135 (6): 1469-1471. doi: 10.1038/jid.2015.56

8. Lee H.J., Park M.K., Kim S.Y., Park Choo H.Y., Lee A.Y. Serotonin induces melanogenesis via serotonin receptor 2A. Br. J. Dermatol. 2011; 165: 13441348. doi: 10.1111/j.1365-2133.2011.10490.x

9. Massari N.A., Medina V.A., Cricco G.P., Mar-tinel Lamas D.J., Sambuco L., Pagotto R., Ventura C., Ciraolo P.J., Pignataro O., Bergoc R.M., Rivera E.S. Antitumor activity of histamine and clozapine in a mouse experimental model of human melanoma. J. Dermatol. Sci. 2013; 72: 252-262. doi: 10.1016/j.jdermsci.2013.07.012

10. Massari N.A., Nicoud M.B., Sambuco L., Cricco G.P., Martinel Lamas D.J., Herrero Ducloux M.V., Medina V.A. Histamine therapeutic efficacy in metastatic melanoma: Role of histamine H4 receptor agonists and opportunity for combination with radiation. Oncotarget. 2017; 8 (16): 26471-26491. doi: 10.18632/oncotarget.15594

11. Pang S., Wu H., Wang Q., Cai M., Shi W., Shang J. Chronic stress suppresses the expression of cutaneous hypothalamic-pituitary-adrenocortical axis elements and melanogenesis. PloS One. 2014; 9 (5): e98283. doi: 10.1371/journal.pone.0098283

12. Paus R., Theoharides T.C., Arck P.C. Neuroim-munoendocrine circuitry of the ‘brain-skin connection’. Trends Immunol. 2006; 27 (1): 32-39. doi: 10.1016/j.it.2005.10.002

13. Perez-Guijarro E., Day C.P., Merlino G., Zaidi M.R. Genetically engineered mouse models of melanoma. Cancer. 2017; 123 (S11): 2089-2103. doi: 10.1002/cncr.30684

14. Slominski A., Wortsman J. Neuroendocrinology of the skin. Endocr. Rev. 2000; 21: 457-487. doi: 10.1210/edrv.21.5.0410

15. Slominski A.T., Zmijewski M.A., Skobow-iat C., Zbytek B., Slominski R.M., Steketee J.D. Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv. Anat. Embryol. Cell. Biol. 2012; 212 (v, vii): 1-115. doi: 10.1007/978-3-642-19683-6_1

16. Slominski A.T., Zmijewski M.A., Zbytek B., Tobin D.J., Theoharides T.C. Key role of CRF in the skin stress response system. Endocr. Rev. 2013; 34: 827-884. doi: 10.1210/er.2012-1092

17. Tchernev G., Lozev I., Temelkova I., Chernin S., Yungareva I. Schizophrenia as potential trigger for melanoma development and progression! The psycho-neuro-endocrine-oncology (P.N.E.O) network! Open Access Maced. J. Med. Sci. 2018; 6 (8): 1442-1445. doi: 10.3889/oamjms.2018.276

18. Wu H.L., Pang S.L., Liu Q.Z., Wang Q., Cai M.X., Shang J. 5-HT1A/1B receptors as targets for optimizing pigmentary responses in C57BL/6 mouse skin to stress. PloS One. 2014; 9 (2): e89663. doi: 10.1371/journal.pone.0089663

19. Wu H., Zhao Y., Huang Q., Cai M., Pan Q., Fu M., An X., Xia Z., Liu M., Jin Y., He L., Shang J. NK1R/5-HT1AR interaction is related to the regulation of melanogenesis. FASEB J. 2018; 32 (6): 3193-3214. doi: 10.1096/fj.201700564RR

20. Zhang X., Yu M., Yu W., Weinberg J., Shapiro J. Development of alopecia areata is associated with higher central and peripheral hypothalamic-pituitary-adrenal tone in the skin graft induced C3H/HeJ mouse model. J. Invest. Dermatol. 2009; 129: 1527-1538. doi: 10.1038/jid.2008.371


Review

For citations:


Frantsiyants E.M., Kaplieva I.V., Surikova E.I., Neskubina I.V., Bandovkina V.A., Trepitaki L.K., Pogorelova Y.A., Nemashkalova L.A. Effect of urokinase gene knockout on tissue levels of biogenic amines in mice with melanoma. Сибирский научный медицинский журнал. 2019;39(6):22-30. (In Russ.) https://doi.org/10.15372/SSMJ20190603

Views: 275


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)