INTRATUMORAL AMPLIFICATION HETEROGENEITY IN HER2/neu-POSITIVE BREAST CANCER MOLECULAR-GENETIC SUBTYPES
https://doi.org/10.15372/SSMJ20190516
Abstract
The defining feature of HER2/neu-positive Luminal B and HER2/neu-positive (non-luminal) subtype breast cancer is HER2/neu gene amplification and protein overexpression on cancer cell membrane. The HER2-targeted therapy is nowadays available for patients with HER2-positive breast cancer However, a significant fraction of HER2+ tumors acquire or possess intrinsic mechanisms of resistance, based on multiple factors, and genetic heterogeneity among them. The aim of our study was to quantify the heterogeneity of HER2/neu amplification in HER2/neu-positive Luminal B and HER2/neu-positive (non-luminal) subtypes of breast cancer. Material and methods. A retrospective analysis of 210 cases referred for dual probe fluorescence in situ hybridization (FISH) confirmation of an immunohistochemical equivocal 2+ result was performed. Results. Our results demonstrated a heterogeneous amplification pattern of HER2/neu gene, whose expression is a substantial cause of HER2/neu-positive Luminal B and HER2/neu-positive (non-luminal) subtypes of breast cancer, in 31 % of invasive breast cancer cases. As heterogeneous, we interpreted tumors containing cells with HER2/CEP17 ratio < 2 and gene copies 4 ≤ HER2/neu < 6, that is, those without HER2/neu amplification. The amount of heterogeneous tumors between HER2/neu-positive Luminal B and HER2/neu-positive (non-luminal) subtypes was not statistically significant. ROC analyses identified optimal cutoff point for HER2/CEP17 ratio as 2.6 for distinguishing heterogeneous tumors. Conclusion. The heterogeneity of HER2/neu amplification is determined by FISH in 31 % of cases and is independent of molecular breast cancer subtype. If a HER2/neu-positive breast cancer has HER2/CEP17 ratio ≤ 2,6, it contains minor subclones without HER2/neu amplification with a probability of 95 %. Our results demonstrated that HER2/neu amplification heterogeneity may be important for prognosis of survival and treatment decisions.
About the Authors
L. N. VashchenkoRussian Federation
doctor of medical sciences, professor
344037, Rostov-on-Don, 14th Line, 63
L. E. Zavalishina
Russian Federation
doctor of biological sciences
125993, Moscow, Barrikadnaya, 2/1, bldg. 1
I. A. Pavlenko
Russian Federation
344015, Rostov-on-Don, Blagodatnaya, 170a
P. E. Povilaitite
Russian Federation
candidate of biological sciences
344015, Rostov-on-Don, Blagodatnaya, 170a
References
1. Zavalishina L.E., Danilova N.V., Matsionis A.E., Pavlenko I.A. Specific features of gene amplification on the long arm of chromosome 17 in different molecular genetic subtypes of breast cancer. Arkhiv patologii = Archiv of Pathology. 2014; 76 (2): 8–12. [In Russian].
2. Malignant tumours in Russia in 2017 (morbidity and mortality). Eds. A.D. Kaprin, V.V. Starinsky, G.V. Petrova. Moscow, 2018. 250 p. [In Russian].
3. Kolyadina I.V., Poddubnaya I.V., Frank G.A., Komov D.V., Karseladze A.I., Ermilova V.D., Vishnevskaya Ya.V. Heterogenety of stage I breast cancer: biological and prognostic value. Zlokachestvennye opukholi = Malignant Tumours. 2015; 4 (1): 35–45. [In Russian]. doi: 10.18027/2224-5057-2015-1-31-40.
4. Stenina M.B. HER2 as a target for modern anti-tumor therapy of breast cancer. Effektivnaya farmakoterapiya = Effective Pharmacotherapy. 2015; (10): 24–31. [In Russian].
5. Breast cancer. Practical guide for doctors. Eds. G.A. Frank, L.E. Zavalishina, K.M. Pozharissky. Moscow, 2014. 168 p. [In Russian].
6. Beca F., Polyak K. Intratumor heterogeneity in breast cancer. Adv. Exp. Med. Biol. 2016; 882: 169–189. doi: 10.1007/978-3-319-22909-6_7.
7. Buckley N.E., Forde C., McArt D.G., Boyle D.P., Mullan P.B., James J.A., Maxwell P., McQuaid S., Salto-Tellez M. Quantification of HER2 heterogeneity in breast cancer-implications for identification of subdominant clones for personalised treatment. Sci. Rep. 2016; 6: 23383. doi: 10.1038/srep23383.
8. Ellsworth R.E., Blackburn H.L., Shriver C.D., Soon-Shiong P., Ellsworth D.L. Molecular heterogeneity in breast cancer: State of the science and implications for patient care. Semin. Cell Dev. Biol. 2017; 64: 65–72. doi: 10.1016/j.semcdb. 2016.08.025.
9. Krishnamurti U., Silverman J.F. HER2 in breast cancer: a review and update. Adv. Anat. Pathol. 2014; 21 (2): 100–107. doi: 10.1097/PAP.0000000000000015.
10. Landmann A., Farrugia D.J., Diego E., Bonaventura M., Soran A., Johnson R., Dabbs D.J., Clark B., Brufsky A., Davidson N.E., Lembersky B.C., Jankowitz R.C., Puhalla S., Ahrendt G.M., McAuliffe P.F., Bhargava R. HER2 equivocal breast cancer and neoadjuvant therapy: Is response similar to HER2-positive or HER2-negative tumors? J. Clin. Oncol. 2016; 34 (Suppl. 15): 612. doi: 10.1200/JCO.2016.34.15_suppl.612.
11. Lipinski K.A., Barber L.J., Davies M.N., Ashenden M., Sottoriva A., Gerlinger M. Cancer Evolution and the Limits of Predictability in Precision Cancer Medicine. Trends Cancer. 2016; 2 (1): 49–63. doi: 10.1016/j.trecan.2015.11.003.
12. Marotta M., Onodera T., Johnson J. Budd G.T., Watanabe T., Cui X., Giuliano A.E., Niida A., Tanaka H. Palindromic amplification of the ERBB2 oncogene in primary HER2-positive breast tumors. Sci. Rep. 2017; 7: 41921. doi: 10.1038/srep41921.
13. Martelotto L., Ng C.K., Piscuoglio S., Weigelt B., Reis-Filho J.S. Breast cancer intra-tumor heterogeneity. Breast Cancer Res. 2014; 16: 210. doi: 10.1186/bcr3658.
14. McGranahan N., Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017; 168 (4): 613–628. doi: 10.1016/j.cell.2017.01.018.
15. Murray C., D’Arcy C., Gullo G., Flanagan L., Quinn C.M. Human epidermal growth factor receptor 2 testing by fluorescent in situ hybridization: positive or negative? ASCO/College of American Pathologists guidelines 2007, 2013, and 2018. Arch. Pathol. Lab. Med. 2019; 143 (4): 412–413. doi: 10.5858/arpa.2018-0905-LE.
16. Ng C.K., Martelotto L.G., Gauthier A., Wen H.C., Piscuoglio S., Lim R.S., Cowell C.F., Wilkerson P.M., Wai P., Rodrigues D.N., Arnould L., Geyer F.C., Bromberg S.E., Lacroix-Triki M., Penault-Llorca F., Giard S., Sastre-Garau X., Natrajan R., Norton L., Cottu P.H., Weigelt B., Vincent-Salomon A., Reis-Filho J.S. Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biol. 2015; 16 (1): 107. doi: 10.1186/s13059-015-0657-6.
17. Nitta H., Kelly B.D., Allred C., Jewell S., Banks P., Dennis E., Grogan T.M. The assessment of HER2 status in breast cancer: the past, the present, and the future. Pathology Int. 2016; 66: 313–324 doi: 10.1111/pin.12407.
18. Pekar G., Kasselaki I., Pekar-Lukacs A., Dekany C., Hellberg D., Tot T. Equivocal (HER2 IHC 2+) breast carcinomas: gene-protein assay testing reveals association between genetic heterogeneity, individual cell amplification status and potential treatment benefits. Histopathology. 2019; 74 (2): 300–310. doi: 10.1111/his.13733.
19. Rye I.H., Trinh A., Saetersdal A.B., Nebdal D., Lingjaerde O.C., Almendro V., Polyak K., Børresen-Dale A.L., Helland Å., Markowetz F., Russnes H.G. Intratumor heterogeneity defines treatment-resistant HER2+ breast tumors. Mol. Oncol. 2018; 12 (11): 1838–1855. doi: 10.1002/1878-0261.12375.
20. Sapino A., Maletta F., Verdun di Cantogno L., Macri L., Botta C., Gugliotta P., Scalzo M.S., Annaratone L., Balmativola D., Pietribiasi F., Bernardi P., Arisio R., Viberti L., Guzzetti S., Orlassino R., Ercolani C., Mottolese M., Viale G., Marchio C. Gene status in HER2 equivocal breast carcinomas: impact of distinct recommendations and contribution of a polymerase chain reaction-based method. Oncologist. 2014; 19 (11): 1118–1126. doi: 10.1634/theoncologist.2014-0195.
21. Seol H., Lee H.J., Choi Y., Lee H.E., Kim Y.J., Kim J.H., Kang E., Kim S.W., Park S.Y. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod. Pathol. 2012; 25: 938–948.
22. Sorlie T. The impact of gene expression patterns in breast cancer. Clin. Chem. 2016; 62 (8): 1150–1151. doi: 10.1373/clinchem.2015.253229.
23. Turashvili G., Brogi E. Tumor heterogeneity in breast cancer. Front. Med. 2017; 4: 227. doi: 10.3389/fmed.2017.00227.
24. Velloso F.J., Bianco A.F., Farias J.O., Torres N.E., Ferruzo P.Y., Anschau V., Jesus-Ferreira H.C., Chang T., Sogayar M.C., Zerbini L.F., Correa R.G. The crossroads of breast cancer progression: insights into the modulation of major signaling pathways. Onco Targets Ther. 2017; 10: 5491–5524. doi: 10.2147/OTT.S142154.
25. Wolff A.C., Hammond M.E.H., Alison K.H., Harvey B.E., McShane L.M., Dowsett M. HER2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update summary. J. Oncol. Pract. 2018; 4 (7): 437–441. doi: 10.1200/JOP.18.00206.
26. Wu Y., Wu K., Chen Z., Zheng W., Zhang L., Yu Y., Su D., Liu S., Sheng Y. Genetic heterogeneity of HER2/Neu in breast carcinoma: a meta analysis. Int. J. Clin. Exp. Med. 2017; 10 (2): 1900–1908.
27. Yang L., Zhang Z., Li J., Chen M., Yang J., Fu J., Bu H., Tang S., Liu Y., Li H., Li X., Xu F., Teng X., Yang Y., Ma Y., Guo S., Wang J., Guo D. A decision tree-based prediction model for fluorescence in situ hybridization HER2 gene status in HER2 immunohistochemistry-2+ breast cancers: a 2538-case multicenter study on consecutive surgical specimens. J. Cancer. 2018; 9 (13): 2327–2333. doi: 10.7150/jca.25586.
Review
For citations:
Vashchenko L.N., Zavalishina L.E., Pavlenko I.A., Povilaitite P.E. INTRATUMORAL AMPLIFICATION HETEROGENEITY IN HER2/neu-POSITIVE BREAST CANCER MOLECULAR-GENETIC SUBTYPES. Сибирский научный медицинский журнал. 2019;39(5):134-140. (In Russ.) https://doi.org/10.15372/SSMJ20190516