INTERACTION OF BIORESORBABLE COMPOSITE IMPLANTS MADE BY SOLUTION BLOW SPINNING WITH TISSUES
https://doi.org/10.15372/SSMJ20190511
Abstract
This work represents the results of the study of the surrounding tissues reaction to the implantation of bioresorbable implants formed by the solution blow spinning from polylactic acid and ultrafine calcium phosphate powders, depending on the time and place of implantation. Using scanning electron microscopy it is shown that implants formed from randomly interwoven fibers have interconnected open porosity. It was established that the addition of calcium phosphate ultrafine powders does not cause changes in the formed implants structure. Histological investigation of tissue specimens from the implantation site revealed a high ability of created implants to successful integration with surrounding tissue after 15 days from the moment of implantation. Complete or partial implant resorption with substitution by own tissues was registered at 90 days after implantation. It was established that implantation of composite bioresorbable implants on the ilium bone stimulates the osteogenic process better than the implantation on skull bone within the same period. It was defined that scarification of the outer cortical plate in implant contact points with bone tissue increases the implants ability to stimulate osteogenic process. It was shown that the composite implants filled with calcium phosphate dibasic dehydrate in ultrafine powder form have the largest ability to stimulate osteogenesis.
Keywords
About the Authors
D. E. KulbakinRussian Federation
candidate of medical sciences
634050, Tomsk, Kooperatiny ln., 5
634050, Tomsk, Moskovsky path, 2
634050, Tomsk, Lenin av., 40
634050, Tomsk, Lenin av., 36
E. L. Choynzonov
Russian Federation
doctor of medical sciences, professor, academician of RAS
634050, Tomsk, Kooperatiny ln., 5
634050, Tomsk, Moskovsky path, 2
634050, Tomsk, Lenin av., 40
634050, Tomsk, Lenin av., 30
N. V. Cherdyntseva
Russian Federation
doctor of biological sciences, professor, corresponding member of RAS
634050, Tomsk, Kooperatiny ln., 5
634050, Tomsk, Lenin av., 36
E. N. Bolbasov
Russian Federation
candidate of technical sciences
634050, Tomsk, Lenin av., 30
V. A. Svetlichnyi
Russian Federation
candidate of physico-mathematical sciences
634050, Tomsk, Lenin av., 36
I. N. Lapin
Russian Federation
634050, Tomsk, Lenin av., 36
S. I. Tverdokhlebov
Russian Federation
candidate of physico-mathematical sciences
634050, Tomsk, Lenin av., 30
A. A. Zheravin
Russian Federation
candidate of medical sciences
630055, Novosibirsk, Rechcunovskaya str., 15
L. N. Bondar
Russian Federation
634050, Tomsk, Kooperatiny ln., 5
V. N. Perelmuter
Russian Federation
doctor of medical sciences, professor
634050, Tomsk, Kooperatiny ln., 5
References
1. Bol’basov E.N., Lapin I.N., Tverdokhlebov S.I., Svetlichnyi V.A. Aerodynamic synthesis of biocompatible matrices and their functionalization by nanoparticles obtained by the method of laser ablation. Russ. Phys. J. 2014; 57 (3): 293–300. doi: 10.1007/s11182-014-0238-2.
2. Bolbasov E.N., Lapin I.N., Svetlichnyi V.A., Lenivtseva Y.D., Malashicheva A., Malashichev Y., Golovkin A.S., Anissimov Y.G., Tverdokhlebov S.I. The formation of calcium phosphate coatings by pulse laser deposition on the surface of polymeric ferroelectric. Appl. Surf. Sci. 2015; 349: 420–429. doi: 10.1016/j.apsusc.2015.05.025.
3. Bolbasov E.N., Stankevich K.S., Sudarev E.A., Bouznik V.M., Kudryavtseva V.L., Antonova L.V., Matveeva V.G., Anissimov Y.G., Tverdokhlebov S.I. The investigation of the production method influence on the structure and properties of the ferroelectric nonwoven materials based on vinylidene fluoride – tetrafluoroethylene copolymer. Mat. Chem. Phys. 2016; 182: 338–346. doi: 10.1016/j.matchemphys.2016.07.041.
4. Daristotle J.L., Behrens A.M., Sandler A.D., Kofinas P. A review of the fundamental principles and applications of solution blow spinning. ACS Appl. Mater. Interfaces. 2016; 8 (51): 34951–34963. doi: 10.1021/acsami.6b12994.
5. Ishii D., Ying T.H., Mahara A., Murakami S., Yamaoka T., Lee W.-k., Iwata T. In vivo tissue response and degradation behavior of PLLA and stereocomplexed PLA nanofibers. Biomacromolecules. 2009; 10 (2): 237–242. doi: 10.1021/bm8009363.
6. Kansy K., Mueller A.A., Mücke T., Kopp J.-B., Koersgen F., Wolff K.D., Zeilhofer H.-F., Hölzle F., Pradel W., Schneider M., Kolk A., Smeets R., Acero J., Hoffmann J. Microsurgical reconstruction of the head and neck – Current concepts of maxillofacial surgery in Europe. J. Cranio-Maxillofacial Surg. 2014; 42 (8): 1610–1613. doi: 10.1016/j.jcms.2014.04.030.
7. Kulbakin D., Chekalkin T., Muhamedov M., Choynzonov E., Kang J.-h., Kang S.-b., Gunther V. Sparing surgery for the successful treatment of thyroid papillary carcinoma invading the trachea: A case report. Case Rep. Oncol. 2016; 9 (3): 772–780. doi: 10.1159/000452790.
8. Kulbakin D.E., Choynzonov E.L., Kulkov S.N., Buyakova S.P., Chernov V.I., Mukhamedov M.R., Buyakov A.S. Method of maxillofacial reconstruction using individualized implants made of bioactive ceramics. Head Neck Tumors. 2017; 7 (4): 29–34. doi: 10.17650/2222-1468-2017-7-4-29-34.
9. Litviakov N.V., Tverdokhlebov S.I., Perelmuter V.M., Kulbakin D.E., Bolbasov E.N., Tsyganov M.M., Zheravin A.A., Svetlichnyi V.A., Cherdyntseva N.V. Composite implants coated with biodegradable polymers prevent stimulating tumor progression. AIP Conf. Proc. 2016; 1760 (1): 020043. doi: 10.1063/1.4960262.
10. Tamayol A., Akbari M., Annabi N., Paul A., Khademhosseini A., Juncker D. Fiber-based tissue engineering : Progress, challenges, and opportunities. Biotechnol. Adv. 2013; 31 (5): 669–687. doi: 10.1016/j.biotechadv.2012.11.007.
11. Tian H., Tang Z., Zhuang X., Chen X., Jing X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 2012; 37: 237–280. doi: 10.1016/j.progpolymsci.2011.06.004.