ON THE BIOLOGICAL EFFECTS OF RADIOFREQUENCY ELECTROMAGNETIC FIELDS
https://doi.org/10.15372/SSMJ20190506
Abstract
There is limited evidence in favor of a carcinogenic effect of radiofrequency electromagnetic fields, based predominantly on epidemiologic research. However, epidemiologic studies of radiation effects may be associated with bias. The brain tumor incidence has in fact not reacted to the tremendous increase in the mobile phone use. A moderate incidence increase in some countries and age groups can be explained by improvements of the imaging technology. The risks reported by epidemiological studies are from electromagnetic radiation of non-thermal intensity. However, UHF-therapy of thermal intensity has been widely used for the treatment of otorhinolaryngolical and other diseases since the 1960s. Associations of the UHF-therapy with enhanced cancer risk have never been reported. Radiofrequency electromagnetic fields of solar and atmospheric origin are components of the natural environment; they are subject to considerable fluctuations. Accordingly, there must be living organisms’ adaptation. The problem can be solved by large-scale animal experiments with registration of the life duration. In some experiments, exposed animals had higher average life duration than controls, which may reflect a biphasic dose-response of hormetic type. Examinations of animals and necropsies incur expenditures that could be used to enhance the number of animals and statistical significance. To make results of experiments transferable to professional exposures or the use of mobile phones, dose rates must be comparable to those in humans.
About the Author
S. V. JarginRussian Federation
candidate of medical sciences
117198, Moscow, Miklukho-Maklaya str., 6
References
1. Samaras T., Kalampaliki E., Sahalos J.N. Influence of thermophysiological parameters on the calculation of temperature rise in the head of mobile phone users. IEEE Trans. Electromagn. Compat. 2007; 49: 936–939. doi: 10.1109/TEMC.2007.908257.
2. Belov B.A., Burtsev Yu.A., Dremukhina L.A. Electromagnetic weather in the near-Earth space depending on the solar wind parameters. Izvestiya Akademii nauk. Seriya fizicheskaya = Bulletin of the Russian Academy of Sciences, Division of Physical Science. 1995; 59 (9): 182–190. [In Russian].
3. SCENIHR. Opinion on potential health effects of exposure to electromagnetic fields. Bioelectromagnetics. 2015; 36: 480–484. doi: 10.1002/bem.21930.
4. Grigoriev Yu.G., Samoylov A.S., Bushmanov A Yu., Khorseva N.I. Cellular connection and the health of children – problem of the third millennium. Meditsinskaya radiologiya i radiatsionnaya bezopasnost’ = Medical Radiology and Radiation Safety. 2017; 62 (2): 39–46. [In Russian]. doi: 10.12737/article_58f0b9573b6b59.54629416.
5. Schüz J., Jacobsen R., Olsen J.H., Boice J.D.Jr., McLaughlin J.K., Johansen C. Cellular telephone use and cancer risk: Update of a nationwide Danish cohort. J. Natl. Cancer Inst. 2006; 98: 1707–1713. doi: 10.1093/jnci/djj464.
6. Grigoriev Yu.G. From electromagnetic smog to electromagnetic chaos. To evaluating the hazards of mobile communication for health of the population. Meditsinskaya radiologiya i radiatsionnaya bezopasnost’ = Medical Radiology and Radiation Safety. 2018; 63 (3): 28–33. [In Russian]. doi: 10.12737/article_5b168a752d92b1.01176625.
7. Schüz J., Ahlbom A. Exposure to electromagnetic fields and the risk of childhood leukaemia: a review. Radiat. Prot. Dosimetry. 2008; 132: 202–211. doi: 10.1093/rpd/ncn270.
8. Grigoriev Yu.G. Mobile communication and electromagnetic chaos in the assessment of population health hazards. Who is responsible? Radiatsionnaya biologiya. Radioekologiya = Radiation Biology. Radioecology. 2018; 58 (6): 633–645. [In Russian]. doi: 10.1134/S086980311806005X.
9. Sienkiewicz Z., Calderón C., Broom K.A., Addison D., Gavard A., Lundberg L., Maslanyj M. Are exposures to multiple frequencies the key to future radiofrequency research? Front. Public Health. 2017; 5: 328. doi: 10.3389/fpubh.2017.00328.
10. Gudina M.V., Volkotrub L.P. Cell phone communication: hygienic characteristics, biological action, standardization (a review). Gigiena i sanitariya = Hygiene and Sanitation. 2010; (4): 38–42. [In Russian].
11. Simkó M., Remondini D., Zeni O., Scarfi M.R. Quality matters: Systematic analysis of endpoints related to «Cellular Life» in vitro data of radiofrequency electromagnetic field exposure. Int. J. Environ. Res. Public Health. 2016; 13 (7). E701. doi: 10.3390/ijerph13070701.
12. Davydov B.I., Tikhonchuk V.S., Antipov V.V. Biologic action, regulations and protection from electromagnetic radiation. Moscow: Energoatomizdat, 1984. [In Russian].
13. Sun C., Wei X., Fei Y., Su L., Zhao X., Chen G., Xu Z. Mobile phone signal exposure triggers a hormesis-like effect in Atm+/+ and Atm–/– mouse embryonic fibroblasts. Sci. Rep. 2016; 6: 37423. doi: 10.1038/srep37423.
14. Kudryashov Yu.B., Perov Yu.F., Golenitskaya I.A. Mechanism of radiobiological effects of low intensity nonionizing electromagnetic radiation. Radiatsionnaya biologiya. Radioekologiya = Radiation Biology. Radioecology. 1999; (1): 79–83. [In Russian].
15. Swerdlow A.J., Feychting M., Green A.C., Leeka Kheifets L.K., Savitz D.A. International Commission for Non-Ionizing Radiation Protection Standing Committee on Epidemiology. Mobile phones, brain tumours, and the interphone study: Where are we now? nviron. Health Perspect. 2011; 119: 1534–1538. doi: 10.1289/ehp.1103693.
16. Kudryashov Yu.B., Perov Yu.F., Rubin A.B. Radiation biophysics. Moscow: Fizmatlit, 2008. [In Russian].
17. Tsybulin O., Sidorik E., Kyrylenko S., Henshel D., Yakymenko I. GSM 900 MHz microwave radiation affects embryo development of Japanese quails. Electromagn. Biol. Med. 2012; 31: 75–86. doi: 10.3109/15368378.2011.624656.
18. Matveev N.P., Seraev N.A. The envelope of air around the Earth. Moscow: MPU, 1997. [In Russian].
19. Valentini E., Ferrara M., Presaghi F., de Gennaro L., Curcio G. Systematic review and meta-analysis of psychomotor effects of mobile phone electromagnetic fields. Occup. Environ. Med. 2010; 67: 708–716. doi: 10.1136/oem.2009.047027.
20. Nikolaevskaya V.P. The use of microwave therapy in patients with chronic tonsillitis. Vestnik otorinolaringologii = Bulletin of Otorhinolaryngology. 1966; 28 (6): 31–34. [In Russian].
21. Verschaeve L., Juutilainen J., Lagroye I., Miyakoshi J., Saunders R., de Seze R., Tenforde T., van Rongen E., Veyret B., Xu Z. In vitro and in vivo genotoxicity of radiofrequency fields. Mutat. Res. 2010; 705: 252–268. doi: 10.1016/j.mrrev.2010.10.001.
22. Pal’tsev Yu.P., Izmerov N.F., Suvorov G.A. Basic science to evaluate efficiency of means protecting from electromagnetic fields. Meditsina truda i promyshlennaya ekologiya = Occupational Medicine and Industrial Ecology. 2002; (9): 32–35. [In Russian].
23. Vijayalaxmi, Prihoda T.J. Comprehensive review of quality of publications and meta-analysis of genetic damage in mammalian cells exposed to non-ionizing radiofrequency fields. Radiat. Res. 2019; 191: 20–30. doi: 10.1667/RR15117.1
24. Petin V.G., Pronkevich M.D. Radiation hormesis under the influence of low doses of ionizing radiation. Obninsk: MIFI, 2013. [In Russian].
25. Vila J., Turner M.C., Gracia-Lavedan E., Figuerola J., Bowman J.D., Kincl L., Richardson L., Benke G., Hours M., Krewski D., McLean D., Parent M.E., Sadetzki S., Schlaefer K., Schlehofer B., Schüz J., Siemiatycki J., van Tongeren M., Cardis E., INTEROCC Study Group. Occupational exposure to high-frequency electromagnetic fields and brain tumor risk in the INTEROCC study: An individualized assessment approach. Environ. Int. 2018; 119: 353–365. doi: 10.1016/j.envint.2018.06.038.
26. Samoilov V.O., Vladimirov V.G., Sharova L.A. Radiobiology of non-ionizing and ionizing radiation. Saint-Petersburg, 2011. [In Russian].
27. Vrijheid M., Deltour I., Krewski D., Sanchez M., Cardis E. The effects of recall errors and of selection bias in epidemiologic studies of mobile phone use and cancer risk. J. Expo. Sci. Environ. Epidemiol. 2006; 16: 371–384. doi: 10.1038/sj.jes.7500509.
28. Subbota AG. Non-thermal effect of microradio waves on the organism (review of the literature). Voyenno-meditsinskiy zhurnal = Military Medical Journal. 1970; (9): 39–45. [In Russian].
29. Wyde M.E., Horn T.L., Capstick M.H., Ladbury J.M., Koepke G., Wilson P.F., Kissling G.E., Stout M.D., Kuster N., Melnick R.L., Gauger J., Bucher J.R., McCormick D.L. Effect of cell phone radiofrequency radiation on body temperature in rodents: Pilot studies of the National Toxicology Program’s reverberation chamber exposure system. Bioelectromagnetics. 2018; 39: 190–199. doi: 10.1002/bem.22116.
30. Teksheva L.M., Barsukova N.K., Chumicheva O.A., Khatit Z.Kh. Hygienic aspects of cellular communication in school age. Gigiena i sanitariya = Hygiene and Sanitation. 2014; (2): 60–65. [In Russian].
31. Yoon S., Choi J.W., Lee E., An H., Choi H.D., Kim N. Mobile phone use and risk of glioma: a casecontrol study in Korea for 2002–2007. Environ. Health Toxicol. 2015; 30: e2015015. doi: 10.5620/eht.e2015015.
32. Kholodov Yu.A. The brain in electromagnetic fields. M.: Nauka, 1982. [In Russian].
33. Jargin S.V. Overestimation of medical consequences of increased radiation background. Meditsinskaya radiologiya i radiatsionnaya bezopasnost’ = Medical Radiology and Radiation Safety. 2008; (3): 17–22. [In Russian].
34. Jargin S.V. On the biological effects of electromagnetic radiation in the radio-frequency range. Tekhnika. Tekhnologii. Inzheneriya = Equipment. Technology. Engineering. 2017; (3): 14–19. [In Russian].
35. Baan R., Grosse Y., Lauby-Secretan B., El Ghissassi F., Bouvard V., Benbrahim-Tallaa L., Guha N., Islami F., Galichet L., Straif K. WHO International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 2011; 12: 624–626. doi: 10.1016/S1470-2045(11)70147-4.
36. Barth A., Winker R., Ponocny-Seliger E., Mayrhofer W., Ponocny I., Sauter C., Vana N. A meta-analysis for neurobehavioural effects due to electromagnetic field exposure emitted by GSM mobile phones. Occup. Environ. Med. 2008; 65: 342–346. doi: 10.1136/oem.2006.031450.
37. Bhargav H., Srinivasan T.M., Varambally S., Gangadhar B.N., Koka P. Effect of mobile phone-induced electromagnetic field on brain hemodynamics and human stem cell functioning: Possible mechanistic link to cancer risk and early diagnostic value of electronphotonic imaging. J. Stem Cells. 2015; 10: 287–294. doi: jsc.2015.10.4.287.
38. Black D.R., Heynick L.N. Radiofrequency (RF) effects on blood cells, cardiac, endocrine, and immunological functions. Bioelectromagnetics. 2003; Suppl. 6: S187–S195. doi: 10.1002/bem.10166.
39. Bunin G.R., Robison L.L., Biegel J.A., Pollack I.F., Rorke-Adams L.B. Parental heat exposure and risk of childhood brain tumour: a Children’s Oncology Group study. Am. J. Epidemiol. 2006; 164: 222–231. doi: 10.1093/aje/kwj174.
40. Carlberg M., Hardell L. Evaluation of mobile phone and cordless phone use and glioma risk using the bradford hill viewpoints from 1965 on association or causation. Biomed. Res. Int. 2017; 2017: 9218486. doi: 10.1155/2017/9218486.
41. Carpenter D.O. Electromagnetic fields and cancer: The cost of doing nothing. Rev. Environ. Health. 2010; 25: 75–80. doi:10.1088/1755-1315/10/1/012004.
42. Davis D.L., Kesari S., Soskolne C.L., Miller A.B., Stein Y. Swedish review strengthens grounds for concluding that radiation from cellular and cordless phones is a probable human carcinogen. Pathophysiology. 2013; 20: 123–129. doi: 10.1016/j.pathophys.2013.03.001.
43. El-Helaly M., Abu-Hashem E. Oxidative stress, melatonin level, and sleep insufficiency among electronic equipment repairers. Indian J. Occup. Environ. Med. 2010; 14 (3): 66–70. doi: 10.4103/0019-5278.75692.
44. Falcioni L., Bua L., Tibaldi E., Lauriola M., de Angelis L., Gnudi F., Mandrioli D., Manservigi M., Manservisi F., Manzoli I., Menghetti I., Montella R., Panzacchi S., Sgargi D., Strollo V., Vornoli A., Belpoggi F. Report of final results regarding brain and heart tumours in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission. Environ. Res. 2018; 165: 496–503. doi: 10.1016/j.envres.2018.01.037.
45. Foster K.R., Glaser R. Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines. Health Phys. 2007. 92. (6). 609–620. doi: 10.1097/01.HP.0000262572.64418.38.
46. Giordano J., Bikson M., Kappenman E.S., Clark V.P., Coslett H.B., Hamblin M.R., Hamilton R., Jankord R., Kozumbo W.J., McKinley R.A., Nitsche M.A., Reilly J.P., Richardson J., Wurzman R., Calabrese E. Mechanisms and effects of transcranial direct current stimulation. Dose Response. 2017. 15 (1): 1559325816685467. doi: 10.1177/1559325816685467.
47. Giorgio M. Oxidative stress and the unfulfilled promises of antioxidant agents. Ecancermedicalscience. 2015; 9: 556. doi: 10.3332/ecancer.2015.556.
48. Gittleman H.R., Ostrom Q.T., Rouse C.D., Dowling J.A., de Blank P.M., Kruchko C.A., Elder J.B., Rosenfeld S.S., Selman W.R., Sloan A.E., Barnholtz-Sloan J.S. Trends in central nervous system tumour incidence relative to other common cancers in adults, adolescents, and children in the United States, 2000 to 2010. Cancer. 2015; 121: 102–112. doi: 10.1002/cncr.29015.
49. Grell K., Frederiksen K., Schüz J., Cardis E., Armstrong B., Siemiatycki J., Krewski D.R., Mc-Bride M.L., Johansen C., Auvinen A., Hours M., Blettner M., Sadetzki S., Lagorio S., Yamaguchi N., Woodward A., Tynes T., Feychting M., Fleming S.J., Swerdlow A.J., Andersen P.K. The intracranial distribution of gliomas in relation to exposure from mobile phones: Analyses from the INTERPHONE study. Am. J. Epidemiol. 2016; 184: 818–828. doi: 10.1093/aje/kww082.
50. IARC. Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields. IARC Monogr. Eval. Carcinog. Risks Hum. 2013; 102: 1–460.
51. ICNIRP Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys. 1998; 74: 494–522.
52. ICNIRP. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 2010; 99: 818–836. doi: 10.1097/HP.0b013e3181f06c86.
53. Inskip P.D., Tarone R.E., Hatch E.E., Wilcosky T.C., Shapiro W.R., Selker R.G., Fine H.A., Black P.M., Loeffler J.S., Linet M.S. Cellular-telephone use and brain tumours. N. Engl. J. Med. 2001; 344: 79–86. doi: 10.1056/NEJM200101113440201.
54. Inskip P.D., Hoover R.N., Devesa S.S. Brain cancer incidence trends in relation to cellular telephone use in the United States. Neuro-Oncol. 2010; 12: 1147–1151. doi: 10.1093/neuonc/noq077.
55. INTERPHONE. Brain tumour risk in relation to mobile telephone use: Results of the INTERPHONE international case-control study. Int. J. Epidemiol. 2010; 39: 675–694. doi: 10.1093/ije/dyq079.
56. Jargin SV. Hormesis: umbrella mechanism only for agents present in the environment. Hum. Exp. Toxicol. 2015; 34 (4): 439–412. doi: 10.1177/0960327114564796.
57. Jargin S.V. On the use of carnosine and antioxidants. J. Intercult. Ethnopharmacol. 2016. 5; (3): 317–319. doi: 10.5455/jice.20160409010229.
58. Jargin S.V. Mobile phones: carcinogenic and other potential risks. J. Environ. Occup. Sci. 2017; 6: 58–60. doi: 10.5455/jeos.20170609094703.
59. Jargin S.V. Radiofrequency electromagnetic fields: Carcinogenic and other biological effects. Multidiscip. Cancer Invest. 2019; 3 (2): 5–13. doi: 10.30699/acadpub.mci.3.2.5.
60. Jargin S.V. Electromagnetic radiofrequency radiation with special reference to otorhinolaryngology and brain tumors. Braz. J. Otorhinolaryngol. 2019; 85 (1): 129. doi: 10.1016/j.bjorl.2018.09.003.
61. Jauchem J.R. Effects of low-level radio-frequency (3kHz to 300GHz) energy on human cardiovascular, reproductive, immune, and other systems: a review of the recent literature. Int. J. Hyg. Environ. Health. 2008; 211: 1-29. doi: 10.1016/j.ijheh.2007.05.001.
62. Ketabi N., Mobasheri H., Faraji-Dana R. Electromagnetic fields (UHF) increase voltage sensitivity of membrane ion channels; possible indication of cell phone effect on living cells. Electromagn. Biol. Med. 2015; 34: 1–13. doi: 10.3109/15368378.2013.844706.
63. La Regina M., Moros E.G., Pickard W.F., Straube W.L., Baty J., Roti J.L. The effect of chronic exposure to 835.62 MHz FDMA or 847.74 MHz CDMA radiofrequency radiation on the incidence of spontaneous tumors in rats. Radiat. Res. 2003; 160: 143–151. doi: 10.1667/RR3028.
64. Leitgeb N., Omerspahic A., Niedermayr F. Exposure of non-target tissues in medical diathermy. Bioelectromagnetics. 2010; 31: 12–19. doi: 10.1002/bem.20521
65. Lerchl A., Klose M., Grote K., Wilhelm A.F., Spathmann O., Fiedler T., Streckert J., Hansen V., Clemens M. Tumour promotion by exposure to radiofrequency electromagnetic fields below exposure limits for humans. Biochem. Biophys. Res. Commun. 2015; 459: 585–590. doi: 10.1016/j.bbrc.2015.02.151.
66. Little M.P., Rajaraman P., Curtis R.E., Devesa S.S., Inskip P.D., Check D.P., Linet M.S. Mobile phone use and glioma risk: Comparison of epidemiological study results with incidence trends in the United States. BMJ. 2012; 344: e1147. doi: 10.1136/bmj.e1147.
67. McRee D.I. Review of Soviet/Eastern European research on health aspects of microwave radiation. Bull. N. Y. Acad. Med. 1979; 55: 1133–1151.
68. Medeiros L.N., Sanchez T.G. Tinnitus and cell phones: the role of electromagnetic radiofrequency radiation. Braz. J. Otorhinolaryngol. 2016; 82 (1): 97–104. doi: 10.1016/j.bjorl.2015.04.013.
69. Mitchell C.L., McRee D.I., Peterson N.J., Tilson H.A., Shandala M.G., Rudnev M.I., Varetskii V.V., Navakatikyan M.I. Results of a United States and Soviet Union joint project on nervous system effects of microwave radiation. Environ. Health Perspect. 1989; 81: 201–209.
70. Momoli F., Siemiatycki J., McBride M.L., Parent M.É., Richardson L., Bedard D., Platt R., Vrijheid M., Cardis E., Krewski D. Probabilistic multiplebias modeling applied to the Canadian data from the Interphone study of mobile phone use and risk of glioma, meningioma, acoustic neuroma, and parotid gland tumours. Am. J. Epidemiol. 2017; 186: 885–893. doi: 10.1093/aje/kwx157.
71. Morgan L.L., Miller A.B., Sasco A., Davis D.L. Mobile phone radiation causes brain tumours and should be classified as a probable human carcinogen (2A) (review). Int. J. Oncol. 2015; 46: 1865–1871. doi: 10.3892/ijo.2015.2908.
72. Moulin J.J., Wild P., Mantout B., Fournier-Betz M., Mur J.M., Smagghe G. Mortality from lung cancer and cardiovascular diseases among stainlesssteel producing workers. Cancer Causes Control. 1993; 4: 75–81.
73. Nakage E.S., Cardozo J.P., Pereira G.T., Queiroz S.A., Boleli I.C. Effect of temperature on incubation period, embryonic mortality, hatch rate, egg water loss and partridge chick weight (Rhynchotus rufescens). Rev. Bras. Cienc. Avic. 2003; 5: 131–135. doi: 10.1590/S1516-635X2003000200007.
74. National Cancer Institute. Cell Phones and Cancer Risk. Bethesda, 2017.
75. NTP technical report on the toxicology and carcinogenesis studies in Hsd: Sprague Dawley SD rats exposed to whole-body radio frequency radiation at a frequency (900 MHz) and modulations (GSM and CDMA) used by cell phones. Natl. Toxicol. Program Tech. Rep. Ser. 2018. 595.
76. NTP technical report on the toxicology and carcinogenesis studies in B6C3F1/N mice exposed to whole-body radio frequency radiation at a frequency (1,900 MHz) and modulations (GSM and CDMA) used by cell phones. Natl. Toxicol. Program Tech. Rep. Ser. 2018. 596.
77. Perez F.P., Zhou X., Morisaki J., Jurivich D. Electromagnetic field therapy delays cellular senescence and death by enhancement of the heat shock response. Exp. Gerontol. 2008; 43: 307–316. doi: 10.1016/j.exger.2008.01.004.
78. Philips A., Henshaw D.L., Lamburn G., O’Carroll M.J. Brain tumours: rise in glioblastoma multiforme incidence in England 1995–2015 suggests an adverse environmental or lifestyle factor. J. Environ. Public Health. 2018. 2018. 7910754. doi: 10.1155/2018/7910754.
79. Regel S.J., Achermann P. Cognitive performance measures in bioelectromagnetic research – critical evaluation and recommendations. Environ. Health. 2011; 10 (1): 10. doi: 10.1186/1476-069X-10-10.
80. Repacholi M., Buschmann J., Pioli C., Sypniewska R. International Oversight Committee (IOC) members for the Franco-Russian Project. An international project to confirm Soviet-era results on immunological and teratological effects of RF field exposure in Wistar rats and comments on Grigoriev et al. [2010]. Bioelectromagnetics. 2011; 32: 325–330. doi: 10.1002/bem.20638.
81. Richardson D.B., Cardis E., Daniels R.D., Gillies M., O’Hagan J.A., Hamra G.B., Haylock R., Laurier D., Leuraud K., Moissonnier M., Schubauer-Berigan M.K., Thierry-Chef I., Kesminiene A. Risk of cancer from occupational exposure to ionising radiation: retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS). BMJ. 2015; 351: h5359. doi: 10.1136/bmj.h5359.
82. Röösli M., Lagorio S., Schoemaker M.J., Schüz J., Feychting M. Brain and salivary gland tumors and mobile phone use: evaluating the evidence from various epidemiological study designs. Annu. Rev. Public Health. 2019; 40: 221–238. doi: 10.1146/annurevpublhealth-040218-044037.
83. Samaras T., Kalampaliki E., Sahalos J.N. Influence of thermophysiological parameters on the calculation of temperature rise in the head of mobile phone users. IEEE Trans. Electromagn. Compat. 2007; 49: 936–939. doi: 10.1109/TEMC.2007.908257.
84. SCENIHR. Opinion on potential health effects of exposure to electromagnetic fields. Bioelectromagnetics. 2015; 36: 480–484. doi: 10.1002/bem.21930.
85. Schüz J., Jacobsen R., Olsen J.H., Boice J.D.Jr., McLaughlin J.K., Johansen C. Cellular telephone use and cancer risk: Update of a nationwide Danish cohort. J. Natl. Cancer Inst. 2006; 98: 1707–1713. doi: 10.1093/jnci/djj464.
86. Schüz J., Ahlbom A. Exposure to electromagnetic fields and the risk of childhood leukaemia: a review. Radiat. Prot. Dosimetry. 2008; 132: 202–211. doi: 10.1093/rpd/ncn270.
87. Sienkiewicz Z., Calderón C., Broom K.A., Addison D., Gavard A., Lundberg L., Maslanyj M. Are exposures to multiple frequencies the key to future radiofrequency research? Front. Public Health. 2017; 5: 328. doi: 10.3389/fpubh.2017.00328.
88. Simkó M., Remondini D., Zeni O., Scarfi M.R. Quality matters: Systematic analysis of endpoints related to «Cellular Life» in vitro data of radiofrequency electromagnetic field exposure. Int. J. Environ. Res. Public Health. 2016; 13 (7). E701. doi: 10.3390/ijerph13070701.
89. Sun C., Wei X., Fei Y., Su L., Zhao X., Chen G., Xu Z. Mobile phone signal exposure triggers a hormesis-like effect in Atm+/+ and Atm–/– mouse embryonic fibroblasts. Sci. Rep. 2016; 6: 37423. doi: 10.1038/srep37423.
90. Swerdlow A.J., Feychting M., Green A.C., Leeka Kheifets L.K., Savitz D.A. International Commission for Non-Ionizing Radiation Protection Standing Committee on Epidemiology. Mobile phones, brain tumours, and the interphone study: Where are we now? nviron. Health Perspect. 2011; 119: 1534–1538. doi: 10.1289/ehp.1103693.
91. Tsybulin O., Sidorik E., Kyrylenko S., Henshel D., Yakymenko I. GSM 900 MHz microwave radiation affects embryo development of Japanese quails. Electromagn. Biol. Med. 2012; 31: 75–86. doi: 10.3109/15368378.2011.624656.
92. Valentini E., Ferrara M., Presaghi F., de Gennaro L., Curcio G. Systematic review and meta-analysis of psychomotor effects of mobile phone electromagnetic fields. Occup. Environ. Med. 2010; 67: 708–716. doi: 10.1136/oem.2009.047027.
93. Verschaeve L., Juutilainen J., Lagroye I., Miyakoshi J., Saunders R., de Seze R., Tenforde T., van Rongen E., Veyret B., Xu Z. In vitro and in vivo genotoxicity of radiofrequency fields. Mutat. Res. 2010; 705: 252–268. doi: 10.1016/j.mrrev.2010.10.001.
94. Vijayalaxmi, Prihoda T.J. Comprehensive review of quality of publications and meta-analysis of genetic damage in mammalian cells exposed to non-ionizing radiofrequency fields. Radiat. Res. 2019; 191: 20–30. doi: 10.1667/RR15117.1
95. Vila J., Turner M.C., Gracia-Lavedan E., Figuerola J., Bowman J.D., Kincl L., Richardson L., Benke G., Hours M., Krewski D., McLean D., Parent M.E., Sadetzki S., Schlaefer K., Schlehofer B., Schüz J., Siemiatycki J., van Tongeren M., Cardis E., INTEROCC Study Group. Occupational exposure to high-frequency electromagnetic fields and brain tumor risk in the INTEROCC study: An individualized assessment approach. Environ. Int. 2018; 119: 353–365. doi: 10.1016/j.envint.2018.06.038.
96. Vrijheid M., Deltour I., Krewski D., Sanchez M., Cardis E. The effects of recall errors and of selection bias in epidemiologic studies of mobile phone use and cancer risk. J. Expo. Sci. Environ. Epidemiol. 2006; 16: 371–384. doi: 10.1038/sj.jes.7500509.
97. Wyde M.E., Horn T.L., Capstick M.H., Ladbury J.M., Koepke G., Wilson P.F., Kissling G.E., Stout M.D., Kuster N., Melnick R.L., Gauger J., Bucher J.R., McCormick D.L. Effect of cell phone radiofrequency radiation on body temperature in rodents: Pilot studies of the National Toxicology Program’s reverberation chamber exposure system. Bioelectromagnetics. 2018; 39: 190–199. doi: 10.1002/bem.22116.
98. Yoon S., Choi J.W., Lee E., An H., Choi H.D., Kim N. Mobile phone use and risk of glioma: a casecontrol study in Korea for 2002–2007. Environ. Health Toxicol. 2015; 30: e2015015. doi: 10.5620/eht.e2015015.