Preview

Сибирский научный медицинский журнал

Advanced search

H2S IN THE NEURODEGENERATION: A «DOUBLE-FACED JANUS»

https://doi.org/10.15372/SSMJ20190505

Abstract

This paper reviews current literature data on the participation of hydrogen sulfide (H<sub>2</sub>S) in the pathogenesis of neurodegenerative disorders – Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). In the CNS the level of H<sub>2</sub>S is determined by the enzymes of its synthesis – cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). H<sub>2</sub>S is a gasotransmitter, the action of which is realized through chemical and conformational modification of protein molecules simultaneously in spacious pools of cells – in a «broad field». The effects of H<sub>2</sub>S are highly divergent when a certain threshold is reached, it moves from the neuroprotection to the neurodegeneration. The neurodegeneration is mediated by both increased (in ALS) and decreased (PD, AD, HD) levels of H<sub>2</sub>S production, which is determined by the activity of different enzymes of its synthesis – CBS (PD, AD, ALS) or CSE (HD) – depending on the specificity of the certain disorder, that leads to the deployment of the especial pattern of neurological events. The disturbances in sulfur-containing amino acids metabolism and thiol-disulfide homeostasis are an integrative part in H<sub>2</sub>S-dependent mechanism of the neurodegeneration. The opposite/divergent negative effect of H<sub>2</sub>S, the involvement of different enzymes of its synthesis and some products of transformation in the pathological process suggest about the dual nature of H<sub>2</sub>S as a signaling molecule at neurodegenerative disorders.

About the Author

E. E. Kolesnikova
A.O. Kovalevsky Institute of Marine Biological Research of RAS
Russian Federation

candidate of biological sciences

299011, Sevastopol, Nakhimov av., 2



References

1. Paul B.D., Sbodio J.I., Xu R., Vandiver M.S., Cha J.Y., Snowman A.M., Snyder S.H. Cystathionine gamma-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature. 2014; 509 (7498): 96–100. doi: 10.1038/nature13136.

2. Illarioshkin S.N. Modern representation about the etiology of Parkinson’s disease. Nevrologicheskiy zhurnal = Neurological Journal. 2015; 20 (4): 4–13. [In Russian].

3. Ripps M.E., Huntley G.W., Hof P.R., Morrison J.H., Gordon J.W. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA. 1995; 92 (3): 689–693. doi: 10.1073/pnas.92.3.689.

4. Razdorskaya V.V., Voskresenskaya O.N., Yudina G.K. Parkinson’s disease in Russia: prevalence and incidence. Saratovskiy nauchno-meditsinskiy zhurnal = Saratov Journal of Medical Scientific Research. 2016; 12 (3): 379–384. [In Russian].

5. Ross C.A., Tabrizi S.J. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011; 10 (1): 83–98. doi: 10.1016/S1474-4422(10)70245-3.

6. Abe K., Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996; 16: 1066–1071. doi: 10.1523/JNEUROSCI.16-03-01066.1996.

7. Sbodio J.I., Snyder S.H., Paul B.D. Transcriptional control of amino acid homeostasis is disrupted in Huntington’s disease. Proc. Natl. Acad. Sci. U S A. 2016; 113 (31): 8843–8848. doi: 10.1073/pnas.1608264113.

8. Ajroud-Driss S., Siddique T. Sporadic and hereditary amyotrophic lateral sclerosis (ALS). Biochim. Biophys. Acta. 2015; 1852 (4): 679–684. doi.org/10.1016/j.bbadis.2014.08.010.

9. Sen N. Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J. Mol. Biol. 2017; 429 (4): 543–561. doi: 10.1016/j.jmb.2016.12.015.

10. Bae S.K., Heo C.H., Choi D.J., Sen D., Joe E.H., Cho B.R., Kim H.M. A Ratiometric two-photon fluorescent probe reveals reduction in mitochondrial H2S production in Parkinson’s disease gene knockout astrocytes. J. Am. Chem. Soc. 2013; 135 (26): 9915–9923. doi: 10.1021/ja404004v.

11. Shefa U., Kim M.S., Jeong N.Y., Jung J. Antioxidant and cell-signaling functions of hydrogen sulfide in the central nervous system. Oxid. Med. Cell. Longev. 2018; 2018: 1873962. doi: 10.1155/2018/1873962.

12. Bates G.P., Mangiarini L., Mahal A., Davies S.W. Transgenic models of Huntingtons disease. Hum. Mol. Genet. 1997; 6 (10): 1633–1637. doi: 10.1093/hmg/6.10.1633.

13. Sunbramanian S., Snyder S.H. Huntington’s disease is a disorder of the corpus striatum: Focus on Rhes (Ras homologue enriched in the striatum). Neuropharmacol. 2011; 60 (7–8): 1187–1192. doi: 10.1016/j.neuropharm.2010.10.025.

14. Borthwick G.M., Johnson M.A., Ince P.G., Shaw P.J., Turnbull D.M. Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implication for the role of mitochondria in the neuronal cell death. Ann. Neurol. 1999; 46 (5): 787–790. doi: 10.1002/1531-8249(199911)46:5<787::AID-ANA17>3.0.CO;2-8.

15. Tiong C.X., Lu M., Bian J.-S. Protective effect of hydrogen sulphide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br. J. Pharmacol. 2010; 161 (2): 467–480. doi: 10.1111/j.1476-5381.2010.00887.x.

16. Bruijn L.I., Becher M.W., Lee M.K., Anderson K.L., Jenkins N.A., Copeland N.G., Sisodia S.S., Rothstein J.D., Borchelt D.R., Price D.L., Cleveland D.W. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron. 1997; 18 (2): 327–338. doi: 10.1016/S0896-6273(00)80272-X.

17. Valentino F., Bivona G., Butera D., Paladino P., Fazzari M., Piccoli T., Ciaccio M., La Bella V. Elevated cerebrospinal fluid and plasma homocysteine levels in ALS. Eur. J. Neurol. 2010; 17 (1): 84–89. doi: 10.1111/j.1468-1331.2009.02752.x.

18. Davies S.W., Turmaine M., Cozens B.A., Di-Figlia M., Sharp A.H., Ross C.A., Scherzinger E., Wanker E.E., Mangiarini L., Bates G.P. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997; 90 (3): 537–548. doi: 10.1016/S0092-8674(00)80513-9.

19. Vandiver M.S., Paul B.D., Xu R. et al. Sulfhydration mediates neuroprotective actions of parkin. Nat. Commun. 2013; 4: 1626. doi: 10.1038/ncomms 2623.

20. Davoli A., Greco V., Spalloni A., Guatteo E., Neri C., Rizzo G.R., Cordella A., Romigi A., Cortese C., Bernardini S., Sarchielli P., Cardaioli G., Calabresi P., Mercuri N.B., Urbani A., Longone P. Evidence of hydrogen sulfide involvement in amyotrophic lateral sclerosis. Ann. Neurol. 2015; 77 (4): 697–709. doi: 10.1002/ana.24372.

21. Vijayvergiya C., Beal M.F., Buck J., Manfredi G. Mutant superoxide dismutase 1 forms aggregate in the brain mitochondria matrix of amyotrophic lateral sclerosis mice. J. Neurosci. 2005; 25 (10): 2463–2470. doi: 10.1523/JNEUROSCI.4385-04.2005.

22. Dusonchet J., Bensadoun J.C., Schneider B.L., Aebischer P. Targeted overexpression of the parkin substrate Pael-R in the nigrostriatal system of adult rats to model Parkinson’s disease. Neurobiol. Dis. 2009; 35 (1): 32–41. doi: 10.1016/j.nbd.2009.03.013.

23. Vural G., Gumusyayla S., Bektas H., Deniz O., Alisik M., Erel O. Impairment of dynamic thioldisulphide homeostasis in patients with idiopathic Parkinson’sdisease and its relationship with clinical stage of disease. Clin. Neurol. Neurosurg. 2017; 153: 50–55. doi: 10.1016/j.clineuro.2016.12.009.

24. Enokido Y., Suzuki E., Iwasawa K., Namekata K., Okazawa H., Kimura H. Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J. 2005; 19 (13): 1854–1856. doi: 10.1096/fj.05-3724fje.

25. Wiedemann F.R., Manfredi G., Mawrin C., Beal M.F, Schon E.A. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J. Neurochem. 2002; 80 (4): 616–625. doi: 10.1046/j.0022-3042.2001.00731.x.

26. Eto K., Asada T., Arima K., Makifuchi T., Kimura H. Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2002; 293 (5): 1485–1488. doi: 10.1016/S0006-291X(02)00422-9.

27. Gouras G.K., Tsai J., Naslund J., Vincent B., Edgar M., Checler F., Greenfield J.P., Haroutunian V., Buxbaum J.D., Xu H., Greengard P., Relkin N.R. Intraneuronal Aβ42 accumulation in human brain. Am. J. Pathol. 2000; 156: 15–20. doi: 10.1016/S0002-9440(10)64700-1.

28. He X.L., Yan N., Zhang H., Qi Y.W., Zhu L.J., Liu M.J., Yan Y. Hydrogen sulfide improves spatial memory impairment and decreases production of Aβ in APP/PS1 transgenic mice. Neurochem Int. 2014; 67: 1–8. doi: 10.1016/j.neuint.2014.01.004.

29. He J.T., Li H., Yang L., Mao C.Y. Role of hydrogen sulfide in cognitive deficits: Evidences and mechanisms. Eur. J. Pharmacol. 2019; 849: 146–153. doi: 10.1016/j.ejphar.2019.01.072.

30. Hu L.F., Lu M., Tiong C.X., Dawe G.S., Hu G., Bian J.S. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell. 2010; 9 (2): 135–146. doi: 10.1111/j.1474-9726.2009.00543.x.

31. Kamat P.K., Kyles P., Kalani A., Tyagi N. Hydrogen sulfide ameliorates homocysteine-induced Alzheimer’s diseaselike pathology, blood–brain barrier disruption, and synaptic disorder. Mol. Neurobiol. 2016; 53 (4): 2451–2467. doi: 10.1007/s12035-015-9212-4.

32. Kamoun P. Endogenous production of hydrogen sulfide in mammals. Amino Acids. 2004; 26 (3): 243–254. doi: 10.1007/s00726-004-0072-x.

33. Kimura H. Metabolic turnover of hydrogen sulfide. Front. Physiol. 2012; 3: 101. doi: 10.3389/fphys.2012.00101.

34. Liu X.-Q., Jiang P., Huang H., Yan Y. Plasma levels of endogenous hydrogen sulfide and homocysteine in patients with Alzheimer’s disease and vascular dementia and the significance thereof. Zhonghua Yi Xue Za Zhi. 2008; 88 (32); 2246–2249.

35. Longone P., Davoli A., Giada R.R., Ezia G., Alida S., Greco V., Urbani A., Mercuri N.B. The increased production of hydrogen sulfide in amyotrophic lateral sclerosis is a significant risk factor? CNS. 2015; 1 (2): 35–37.

36. Longone P., Davoli V., Greco V., Spalloni A., Guatteo E., Neri C., Rizzo G.R., Cordella A., Romigi A., Cortese C., Bernardini S., Sarchielli P., Cardaioli G., Calabresi P., Urbani A., Mercuri N.B. Hydrogen sulphide «a double-faced Janus» in amyotrophic lateral sclerosis (ALS). Therapeutic Targets for Neurological Diseases. 2015; 2: e749. doi: 10.14800/ttnd.749.

37. McCaddon A., Regland B. Homocysteine and cognition – no longer a hypothesis? Med. Hypotheses. 2006; 66 (3): 682–683. doi: 10.1016/j.mehy.2005.03.034.

38. Mangiarini L., Sathasivam K., Seller M., Cozens B., Harper A., Hetherington C., Lawton M., Trottier Y., Lehrach H., Davies S.W., Bates G.P. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996; 87 (3): 493–506. doi: 10.1016/S0092-8674(00)81369-0.

39. Mizuno Y., Hattori N., Kitada T., Matsumine H., Mori H., Shimura H., Kubo S., Kobayashi H., Asakawa S., Minoshima S., Shimizu N. Familial Parkinson’s disease. Alpha-synuclein and parkin. Adv. Neurol. 2001; 86: 13–21.

40. De la Monte S.M., Vonsattel J.-P., Richardson E.P. Morphometric demonstration of atrophic changes in the cerebral cortex, white matter and neostriatum in Huntington’s disease. J. Neuropathol. Exp. Neurol. 1988; 47 (5): 516–525. doi: 10.1097/00005072-198809000-00003.

41. Morrison L.D., Smith D.D., Kish S.J. Brain Sadenosylmethionine levels are severely decreased in Alzheimer’s disease. J. Neurochem. 1996; 67 (3): 1328–1331. doi: 10.1046/j.1471-4159.1996.67031328.x.

42. Olson K.R., Donald J.A., Dombkowski R.A., Perry S.F. Evolutionary and comparative aspects of nitric oxide, carbon monoxide and hydrogen sulfide. Respir. Physiol. Neurobiol. 2012; 184 (2): 117–129. doi: 10.1016/j.resp.2012.04.004.

43. Olson K.R., Straub K.D. The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology (Bethesda). 2015; 31 (1): 60–72. doi: 10.1152/physiol.00024.2015.

44. Panthi S., Manandhar S., Gautam K. Hydrogen sulfide, nitric oxide, and neurodegenerative disorders. Transl. Neurodegener. 2018; 7: 3. doi: 10.1186/s40035-018-0108-x.

45. Paul B.D., Snyder S.H. Neurodegeneration in Huntington’s disease involves loss of cystathionine γ-lyase. Cell Cycle. 2014; 13 (16): 2491–2493. doi: 10.4161/15384101.2014.950538.

46. Paul B.D., Snyder S.H. Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem. Pharmacol. 2018; 149: 101–109. doi: 10.1016/j.bcp.2017.11.019.

47. Paul B.D., Sbodio J.I., Xu R., Vandiver M.S., Cha J.Y., Snowman A.M., Snyder S.H. Cystathionine gamma-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature. 2014; 509 (7498): 96–100. doi: 10.1038/nature13136.

48. Ripps M.E., Huntley G.W., Hof P.R., Morrison J.H., Gordon J.W. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA. 1995; 92 (3): 689–693. doi: 10.1073/pnas.92.3.689.

49. Ross C.A., Tabrizi S.J. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011; 10 (1): 83–98. doi: 10.1016/S1474-4422(10)70245-3.

50. Sbodio J.I., Snyder S.H., Paul B.D. Transcriptional control of amino acid homeostasis is disrupted in Huntington’s disease. Proc. Natl. Acad. Sci. U S A. 2016; 113 (31): 8843–8848. doi: 10.1073/pnas.1608264113.

51. Sen N. Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J. Mol. Biol. 2017; 429 (4): 543–561. doi: 10.1016/j.jmb.2016.12.015.

52. Shefa U., Kim M.S., Jeong N.Y., Jung J. Antioxidant and cell-signaling functions of hydrogen sulfide in the central nervous system. Oxid. Med. Cell. Longev. 2018; 2018: 1873962. doi: 10.1155/2018/1873962.

53. Sunbramanian S., Snyder S.H. Huntington’s disease is a disorder of the corpus striatum: Focus on Rhes (Ras homologue enriched in the striatum). Neuropharmacol. 2011; 60 (7–8): 1187–1192. doi: 10.1016/j.neuropharm.2010.10.025.

54. Tiong C.X., Lu M., Bian J.-S. Protective effect of hydrogen sulphide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br. J. Pharmacol. 2010; 161 (2): 467–480. doi: 10.1111/j.1476-5381.2010.00887.x.

55. Valentino F., Bivona G., Butera D., Paladino P., Fazzari M., Piccoli T., Ciaccio M., La Bella V. Elevated cerebrospinal fluid and plasma homocysteine levels in ALS. Eur. J. Neurol. 2010; 17 (1): 84–89. doi: 10.1111/j.1468-1331.2009.02752.x.

56. Vandiver M.S., Paul B.D., Xu R. et al. Sulfhydration mediates neuroprotective actions of parkin. Nat. Commun. 2013; 4: 1626. doi: 10.1038/ncomms 2623.

57. Vijayvergiya C., Beal M.F., Buck J., Manfredi G. Mutant superoxide dismutase 1 forms aggregate in the brain mitochondria matrix of amyotrophic lateral sclerosis mice. J. Neurosci. 2005; 25 (10): 2463–2470. doi: 10.1523/JNEUROSCI.4385-04.2005.

58. Vural G., Gumusyayla S., Bektas H., Deniz O., Alisik M., Erel O. Impairment of dynamic thioldisulphide homeostasis in patients with idiopathic Parkinson’sdisease and its relationship with clinical stage of disease. Clin. Neurol. Neurosurg. 2017; 153: 50–55. doi: 10.1016/j.clineuro.2016.12.009.

59. Wiedemann F.R., Manfredi G., Mawrin C., Beal M.F, Schon E.A. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J. Neurochem. 2002; 80 (4): 616–625. doi: 10.1046/j.0022-3042.2001.00731.x.


Review

For citations:


Kolesnikova E.E. H2S IN THE NEURODEGENERATION: A «DOUBLE-FACED JANUS». Сибирский научный медицинский журнал. 2019;39(5):41-51. (In Russ.) https://doi.org/10.15372/SSMJ20190505

Views: 377


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)