Preview

Сибирский научный медицинский журнал

Расширенный поиск

H2S В НЕЙРОДЕГЕНЕРАЦИИ: «ДВУЛИКИЙ ЯНУС»

https://doi.org/10.15372/SSMJ20190505

Полный текст:

Аннотация

В обзоре представлены данные литературы об участии сульфида водорода (сероводород, H<sub>2</sub>S) в качестве сигнальной молекулы в патогенезе нейродегенеративных заболеваний – болезни Паркинсона (БП), болезни Альцгеймера (БА), болезни Хантингтона (БХ) и бокового амиотрофического склероза (БАС). В центральной нервной системе уровень H<sub>2</sub>S определяется ферментами его синтеза – цистатионин-β-синтазой (CBS) и цистатионинγ-лиазой (CSE). H<sub>2</sub>S – газообразный трансмиттер, действие которого реализуется посредством химической и конформационной модификации молекул белков одновременно в объемных пулах клеток – «широком поле». Эффекты H<sub>2</sub>S отличаются разнонаправленностью, при достижении определенного порога сдвигаясь от нейропротекции к нейродегенерации. Оказалось, что процессы нейродегенерации опосредуются как повышенным (при БАС), так и пониженным (при БП, БА, БХ) уровнем продукции H<sub>2</sub>S, определяемым активностью отдельных ферментов его синтеза – CBS (БП, БА, БАС) и CSE (БХ), что приводит к развертыванию характерного для определенного заболевания паттерна неврологических событий. Патогенез нейродегенеративных заболеваний также предполагает изменения метаболизма серосодержащих аминокислот и тиол-дисульфидного гомеостаза как составной части H<sub>2</sub>S-зависимых сигнальных путей. Разнонаправленное негативное воздействие, вовлечение разных ферментов синтеза и продуктов преобразования сульфида водорода в механизмы развития патологии предполагает двойственную природу H<sub>2</sub>S в качестве сигнальной молекулы.

Об авторе

Е. Э. Колесникова
Институт морских биологических исследований им. А.О. Ковалевского РАН
Россия

к.б.н.,

299011, г. Севастополь, просп. Нахимова, 2



Список литературы

1. Иллариошкин С.Н. Современные представления об этиологии болезни Паркинсона. Неврол. журн. 2015; 20 (4): 4–13.

2. Раздорская В.В., Воскресенская О.Н., Юдина Г.К. Болезнь Паркинсона в России: распространенность и заболеваемость. Сарат. науч.-мед. журн. 2016; 12 (3): 379–384.

3. Abe K., Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996; 16: 1066–1071. doi: 10.1523/JNEUROSCI.16-03-01066.1996.

4. Ajroud-Driss S., Siddique T. Sporadic and hereditary amyotrophic lateral sclerosis (ALS). Biochim. Biophys. Acta. 2015; 1852 (4): 679–684. doi.org/10.1016/j.bbadis.2014.08.010.

5. Bae S.K., Heo C.H., Choi D.J., Sen D., Joe E.H., Cho B.R., Kim H.M. A Ratiometric two-photon fluorescent probe reveals reduction in mitochondrial H2S production in Parkinson’s disease gene knockout astrocytes. J. Am. Chem. Soc. 2013; 135 (26): 9915–9923. doi: 10.1021/ja404004v.

6. Bates G.P., Mangiarini L., Mahal A., Davies S.W. Transgenic models of Huntingtons disease. Hum. Mol. Genet. 1997; 6 (10): 1633–1637. doi: 10.1093/hmg/6.10.1633.

7. Borthwick G.M., Johnson M.A., Ince P.G., Shaw P.J., Turnbull D.M. Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implication for the role of mitochondria in the neuronal cell death. Ann. Neurol. 1999; 46 (5): 787–790. doi: 10.1002/1531-8249(199911)46:5<787::AID-ANA17>3.0.CO;2-8.

8. Bruijn L.I., Becher M.W., Lee M.K., Anderson K.L., Jenkins N.A., Copeland N.G., Sisodia S.S., Rothstein J.D., Borchelt D.R., Price D.L., Cleveland D.W. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron. 1997; 18 (2): 327–338. doi: 10.1016/S0896-6273(00)80272-X.

9. Davies S.W., Turmaine M., Cozens B.A., Di-Figlia M., Sharp A.H., Ross C.A., Scherzinger E., Wanker E.E., Mangiarini L., Bates G.P. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997; 90 (3): 537–548. doi: 10.1016/S0092-8674(00)80513-9.

10. Davoli A., Greco V., Spalloni A., Guatteo E., Neri C., Rizzo G.R., Cordella A., Romigi A., Cortese C., Bernardini S., Sarchielli P., Cardaioli G., Calabresi P., Mercuri N.B., Urbani A., Longone P. Evidence of hydrogen sulfide involvement in amyotrophic lateral sclerosis. Ann. Neurol. 2015; 77 (4): 697–709. doi: 10.1002/ana.24372.

11. Dusonchet J., Bensadoun J.C., Schneider B.L., Aebischer P. Targeted overexpression of the parkin substrate Pael-R in the nigrostriatal system of adult rats to model Parkinson’s disease. Neurobiol. Dis. 2009; 35 (1): 32–41. doi: 10.1016/j.nbd.2009.03.013.

12. Enokido Y., Suzuki E., Iwasawa K., Namekata K., Okazawa H., Kimura H. Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J. 2005; 19 (13): 1854–1856. doi: 10.1096/fj.05-3724fje.

13. Eto K., Asada T., Arima K., Makifuchi T., Kimura H. Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2002; 293 (5): 1485–1488. doi: 10.1016/S0006-291X(02)00422-9.

14. Gouras G.K., Tsai J., Naslund J., Vincent B., Edgar M., Checler F., Greenfield J.P., Haroutunian V., Buxbaum J.D., Xu H., Greengard P., Relkin N.R. Intraneuronal Aβ42 accumulation in human brain. Am. J. Pathol. 2000; 156: 15–20. doi: 10.1016/S0002-9440(10)64700-1.

15. He X.L., Yan N., Zhang H., Qi Y.W., Zhu L.J., Liu M.J., Yan Y. Hydrogen sulfide improves spatial memory impairment and decreases production of Aβ in APP/PS1 transgenic mice. Neurochem Int. 2014; 67: 1–8. doi: 10.1016/j.neuint.2014.01.004.

16. He J.T., Li H., Yang L., Mao C.Y. Role of hydrogen sulfide in cognitive deficits: Evidences and mechanisms. Eur. J. Pharmacol. 2019; 849: 146–153. doi: 10.1016/j.ejphar.2019.01.072.

17. Hu L.F., Lu M., Tiong C.X., Dawe G.S., Hu G., Bian J.S. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell. 2010; 9 (2): 135–146. doi: 10.1111/j.1474-9726.2009.00543.x.

18. Kamat P.K., Kyles P., Kalani A., Tyagi N. Hydrogen sulfide ameliorates homocysteine-induced Alzheimer’s diseaselike pathology, blood–brain barrier disruption, and synaptic disorder. Mol. Neurobiol. 2016; 53 (4): 2451–2467. doi: 10.1007/s12035-015-9212-4.

19. Kamoun P. Endogenous production of hydrogen sulfide in mammals. Amino Acids. 2004; 26 (3): 243–254. doi: 10.1007/s00726-004-0072-x.

20. Kimura H. Metabolic turnover of hydrogen sulfide. Front. Physiol. 2012; 3: 101. doi: 10.3389/fphys.2012.00101.

21. Liu X.-Q., Jiang P., Huang H., Yan Y. Plasma levels of endogenous hydrogen sulfide and homocysteine in patients with Alzheimer’s disease and vascular dementia and the significance thereof. Zhonghua Yi Xue Za Zhi. 2008; 88 (32); 2246–2249.

22. Longone P., Davoli A., Giada R.R., Ezia G., Alida S., Greco V., Urbani A., Mercuri N.B. The increased production of hydrogen sulfide in amyotrophic lateral sclerosis is a significant risk factor? CNS. 2015; 1 (2): 35–37.

23. Longone P., Davoli V., Greco V., Spalloni A., Guatteo E., Neri C., Rizzo G.R., Cordella A., Romigi A., Cortese C., Bernardini S., Sarchielli P., Cardaioli G., Calabresi P., Urbani A., Mercuri N.B. Hydrogen sulphide «a double-faced Janus» in amyotrophic lateral sclerosis (ALS). Therapeutic Targets for Neurological Diseases. 2015; 2: e749. doi: 10.14800/ttnd.749.

24. McCaddon A., Regland B. Homocysteine and cognition – no longer a hypothesis? Med. Hypotheses. 2006; 66 (3): 682–683. doi: 10.1016/j.mehy.2005.03.034.

25. Mangiarini L., Sathasivam K., Seller M., Cozens B., Harper A., Hetherington C., Lawton M., Trottier Y., Lehrach H., Davies S.W., Bates G.P. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996; 87 (3): 493–506. doi: 10.1016/S0092-8674(00)81369-0.

26. Mizuno Y., Hattori N., Kitada T., Matsumine H., Mori H., Shimura H., Kubo S., Kobayashi H., Asakawa S., Minoshima S., Shimizu N. Familial Parkinson’s disease. Alpha-synuclein and parkin. Adv. Neurol. 2001; 86: 13–21.

27. De la Monte S.M., Vonsattel J.-P., Richardson E.P. Morphometric demonstration of atrophic changes in the cerebral cortex, white matter and neostriatum in Huntington’s disease. J. Neuropathol. Exp. Neurol. 1988; 47 (5): 516–525. doi: 10.1097/00005072-198809000-00003.

28. Morrison L.D., Smith D.D., Kish S.J. Brain Sadenosylmethionine levels are severely decreased in Alzheimer’s disease. J. Neurochem. 1996; 67 (3): 1328–1331. doi: 10.1046/j.1471-4159.1996.67031328.x.

29. Olson K.R., Donald J.A., Dombkowski R.A., Perry S.F. Evolutionary and comparative aspects of nitric oxide, carbon monoxide and hydrogen sulfide. Respir. Physiol. Neurobiol. 2012; 184 (2): 117–129. doi: 10.1016/j.resp.2012.04.004.

30. Olson K.R., Straub K.D. The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology (Bethesda). 2015; 31 (1): 60–72. doi: 10.1152/physiol.00024.2015.

31. Panthi S., Manandhar S., Gautam K. Hydrogen sulfide, nitric oxide, and neurodegenerative disorders. Transl. Neurodegener. 2018; 7: 3. doi: 10.1186/s40035-018-0108-x.

32. Paul B.D., Snyder S.H. Neurodegeneration in Huntington’s disease involves loss of cystathionine γ-lyase. Cell Cycle. 2014; 13 (16): 2491–2493. doi: 10.4161/15384101.2014.950538.

33. Paul B.D., Snyder S.H. Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem. Pharmacol. 2018; 149: 101–109. doi: 10.1016/j.bcp.2017.11.019.

34. Paul B.D., Sbodio J.I., Xu R., Vandiver M.S., Cha J.Y., Snowman A.M., Snyder S.H. Cystathionine gamma-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature. 2014; 509 (7498): 96–100. doi: 10.1038/nature13136.

35. Ripps M.E., Huntley G.W., Hof P.R., Morrison J.H., Gordon J.W. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA. 1995; 92 (3): 689–693. doi: 10.1073/pnas.92.3.689.

36. Ross C.A., Tabrizi S.J. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011; 10 (1): 83–98. doi: 10.1016/S1474-4422(10)70245-3.

37. Sbodio J.I., Snyder S.H., Paul B.D. Transcriptional control of amino acid homeostasis is disrupted in Huntington’s disease. Proc. Natl. Acad. Sci. U S A. 2016; 113 (31): 8843–8848. doi: 10.1073/pnas.1608264113.

38. Sen N. Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J. Mol. Biol. 2017; 429 (4): 543–561. doi: 10.1016/j.jmb.2016.12.015.

39. Shefa U., Kim M.S., Jeong N.Y., Jung J. Antioxidant and cell-signaling functions of hydrogen sulfide in the central nervous system. Oxid. Med. Cell. Longev. 2018; 2018: 1873962. doi: 10.1155/2018/1873962.

40. Sunbramanian S., Snyder S.H. Huntington’s disease is a disorder of the corpus striatum: Focus on Rhes (Ras homologue enriched in the striatum). Neuropharmacol. 2011; 60 (7–8): 1187–1192. doi: 10.1016/j.neuropharm.2010.10.025.

41. Tiong C.X., Lu M., Bian J.-S. Protective effect of hydrogen sulphide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br. J. Pharmacol. 2010; 161 (2): 467–480. doi: 10.1111/j.1476-5381.2010.00887.x.

42. Valentino F., Bivona G., Butera D., Paladino P., Fazzari M., Piccoli T., Ciaccio M., La Bella V. Elevated cerebrospinal fluid and plasma homocysteine levels in ALS. Eur. J. Neurol. 2010; 17 (1): 84–89. doi: 10.1111/j.1468-1331.2009.02752.x.

43. Vandiver M.S., Paul B.D., Xu R. et al. Sulfhydration mediates neuroprotective actions of parkin. Nat. Commun. 2013; 4: 1626. doi: 10.1038/ncomms 2623.

44. Vijayvergiya C., Beal M.F., Buck J., Manfredi G. Mutant superoxide dismutase 1 forms aggregate in the brain mitochondria matrix of amyotrophic lateral sclerosis mice. J. Neurosci. 2005; 25 (10): 2463–2470. doi: 10.1523/JNEUROSCI.4385-04.2005.

45. Vural G., Gumusyayla S., Bektas H., Deniz O., Alisik M., Erel O. Impairment of dynamic thioldisulphide homeostasis in patients with idiopathic Parkinson’sdisease and its relationship with clinical stage of disease. Clin. Neurol. Neurosurg. 2017; 153: 50–55. doi: 10.1016/j.clineuro.2016.12.009.

46. Wiedemann F.R., Manfredi G., Mawrin C., Beal M.F, Schon E.A. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J. Neurochem. 2002; 80 (4): 616–625. doi: 10.1046/j.0022-3042.2001.00731.x.


Для цитирования:


Колесникова Е.Э. H2S В НЕЙРОДЕГЕНЕРАЦИИ: «ДВУЛИКИЙ ЯНУС». Сибирский научный медицинский журнал. 2019;39(5):41-51. https://doi.org/10.15372/SSMJ20190505

For citation:


Kolesnikova E.E. H2S IN THE NEURODEGENERATION: A «DOUBLE-FACED JANUS». Siberian Scientific Medical Journal. 2019;39(5):41-51. (In Russ.) https://doi.org/10.15372/SSMJ20190505

Просмотров: 18


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)